NASA/TM-2002-211632

Fly-By-Light/Power-By-Wire Fault-Tolerant
Fiber-Optic Backplane

Mahyar R. Malekpour
Langley Research Center, Hampton, Virginia

|
April 2002

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
Program Office plays a key part in helping NASA
maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for NASA’s
scientific and technical information. The NASA STI
Program Office provides access to the NASA STI
Database, the largest collection of aeronautical and
space science STI in the world. The Program Office
is also NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are

published by NASA in the NASA STI Report
Series, which includes the following report

types:

« TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing reference
value. NASA counterpart of peer-reviewed formal
professional papers, but having less stringent
limitations on manuscript length and extent of
graphic presentations.

+ TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

+ CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

+ CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings sponsored or
co-sponsored by NASA.

» SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services that complement the

STI Program Office’s diverse offerings include

creating custom thesauri, building customized
databases, organizing and publishing
research results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

* Access the NASA STI Program Home
Page at hetp://www.sti.nasa.gov

* Email your question via the Internet to
help@sti.nasa.gov

» Fax your question to the NASA STI
Help Desk at (301) 621-0134

+ Telephone the NASA STI Help Desk at
(301) 621-0390

* Write to:
NASA STI Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320

NASA/TM-2002-211632

Fly-By-Light/Power-By-Wire Fault-Tolerant
Fiber-Optic Backplane

Mahyar R. Malekpour
Langley Research Center, Hampton, Virginia

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

|
April 2002

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an

official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and
Space Administration.

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road

Hanover, MD 21076-1320 Springfield, VA 22161-2171

(301) 621-0390 (703) 605-6000

Abstract

The design and development of a fault-tolerant fiber-optic backplane
to demonstrate feasibility of such architecture is presented. The
simulation results of test cases on the backplane in the advent of induced
faults are presented, and the fault recovery capability of the architecture
is demonstrated. The architecture was designed, developed, and
implemented using the Very High Speed Integrated Circuits (VHSIC)
Hardware Description Language (VHDL). The architecture was
synthesized and implemented in hardware using Field Programmable
Gate Arrays (FPGA) on multiple prototype boards.

1l

Acknowledgments

I would like to acknowledge my gratitude to Dr. Jerry H. Tucker of NASA Langley Research
Center for his guidance during the development process. I would like to acknowledge my appreciation to
Dr. Celeste M. Belcastro of NASA Langley Research Center for her recommendations. I would also like
to acknowledge my appreciation to Dr. Paul S. Miner of NASA Langley Research Center for his helpful
comments in eatlier version of this report. Lastly, I would like to acknowledge my appreciation to
Wilfredo Torres-Pomales of NASA Langley Research Center for his review and helpful comments of the
final version of this report.

v

Table of Contents

ACKNOWIBAGIMENES ...oiiiiiiiiiiii ittt e e es et te e eeeseeestnr e aeeeeensssseaeaeseasnssssnaeeeseannnss v
TabIE OF CONLEIESeiiiiiie ittt et e ettt e et ee e e bt e eeeatte e e et eeeeaneeeeeeaneee v
LASE OF FIUTES.....viieitieie ettt ettt e e e ee e et te e aeeseenssseeeaeeeeasnsssseaeaeeasnnssssnaaeessannnss vi
AALCTOTLYIIIS L. eteietiitieteeeeeeetatae e teeeeesseseee s e easssssseeae e eaasnssesaeaees saasssnseaeeeeaanssssnnssee e sansnsseneeesenanss vii
Lo INETOAUCTION .ttt ittt e e ettt e ettt ettt ee e eae e e e eaatbeeeteeeeaeenneeeeeaneee 1
2. Design and DEeVEIOPIMENTccoiuutiiiiiiiieiiiiiit ettt ettt ee e st ee e e eeaee e ebeeeesaneeeeseaneee 3
2.1 BIURMU Lo ettt ettt ettt e e ettt e eete e e ette e e ate e e eateaeeaeeeenteeeanseeenneeeenns 4
2.2 PaCKet FOTTNALSeiiiiiiitii ittt ettt e et e et e eat e e e etteeeaeaneee s 6
2.3 PEIfOTINANCE ...ttt e ettt ettt e e ettt e e et te e et te e e eatbeeaaanneee s 8
2.4 RePOTHNG BEITOTS....ciiiiiitiiiiii ettt e et e ettt e et ee e e saieeeeeaaeee 10
2.5 HOUSEKEEPINEZ ...ttt ettt et e et e et e e ettt e ettt e eesaneeeeeaneee 10
2.6 TNPUE DALAeeiiiiiiiie ettt ettt et e et e et 11
2.7 OUPUE DACA ..o ettt e e ettt e e ettt e e e e 13
2.8 SYSLEIM TIIMETS.uviiiiities ettt eees ettt ir e eeeeeettsreeaesessaessssaeaeeseassseseseaeseassnssnsseee e sansnssnns 13
2.9 FIFO .. e e et et et e ettt et ettt et ee e et ee et 14
2,10 EPROM....oiiii ittt ettt et e e ettt e eete e eea e e e eae e e ente e e eaeeeenteeeenteeenneaeas 14
21T Schedule FOrmat.........uoiiiiiiiiiiii ettt et ee e e saee e e e 15
2.12 Schedule COnrOILETcoiiiiiiiiiiiie ettt et ee e e eaiee e e e 16
2.13 BIU TESDENCHeiiiiiiii it ettt et ee e e eaee e e e 17
2.14 RMU TESDENCH ..ottt ettt ee e e saee e e e 17
2.15 MICTOPTOCESSOT (PC) ..iiiiiiiiiiiiiiit e et ettt e e tee et ee e e 18
2.16 Fault INJECLION ...uvvviiiieiseeiiit et e ettt e e e sttt e e e eeessseteeeaeeeeesnsseneeeaeseansnssens 19
2,17 FaUlt RECOVETY ..uvviiiiiiiiiiiiit et ettt ae e e e st see e e e e e s ssete e aeeeessnssenreeaeseensnssees 20
2.18 Reporting FaUlsoiiiiiiiiiiiiii et et 20
3. Hardware DevVeIOPMENL........cooiiiiiiiiiiiiiiiiie ettt e et e e et e et eeeaeaieeeeeaaeee 21
B PAL ettt ettt a e eate e e nte e ente e ente e e st e et eeenne 21
3.2 Address ASSIZNIMENL.uviiiereerieeiiritteeeeeeeiiterieeeeeeeisrtereeeesseanssesreeeessessnseaeaeseessasssseeeees 22
3.3 XC3020 and Microprocessor INerfaceccovuieiiiiiniiiiniiiiniienieiiiic e 22
3.4 Programming XC4005A and Testing FIFOSccoccoiiiiiiiiiiiiiiie e 22
4. Simulation Results and TeSt CaSEScccovuiiiiriiiiiriiiiie ittt ee et ee et eeeeeiieeee e 23
A1 TAEAL CASE...eieeiiiiee e e et et ettt et et ee et 23
4.2 Failing a BIU ..ottt et e e et ee e e e e e s sttt ee e e e e esassenreeaeeeeennnnees 26
S SUITIMIATY ...ttt ieee ettt e e eeeetaer e aeeeesasseaeaeaeeeaasnssesae e e sasnssseaa e e sssassseaeseansnssnneeaeessansnssnns 29
5.1 Future ENRAnCEMENTSoeiiiiiiiiiiiiit ettt ettt e et teeeeaaeeesenneeees 29
RETEIEIICES ...t ettt e e e et e e et e ettt e eeeaneeeeeaneee 30
APPEIAIX A L.ttt ettt e et e e ettt et ee e e eanteeeeneee 31
APPENAIX B.ooii e et e et e et ee e 91
APPEIAIX C oot e ettt e ettt e ettt e et e e ettt ettt ee e e eanteeeeneee 98
APPENAIX D oo e e ettt e e et ee e 102
APPENAIX B e e e ettt e e eaeee e 103

List of Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.

FIber-Optic CRANMEL.coiiiiiiiiiit e eeeee e 1
Fiber-Optic BaCKPIane.cocoiiiiiiiiiiiii ittt et et ee e 2
Global clock, fiber-optic channel..............ccccciiiiiiiiiiiiiiii e 4
BIU/RMU functional deSCITPLIONS.eeeiriiiitiriiieieeiiiieeeniiiieeeeieeeenie e eesiieeeeeeeeeeens 5
PaCKet FOTTNALS.eiiiiiiiiiiiie et ettt e et ee e et aeeetaeeeeans 7
Channel read bus bandwidth efficiency as a function of packet size.ccccocvueernn. 9
Status_Reg 0, error bit asSiZNMENLS.o.vieereriiiiirieieeeeriiiiieieeeseesieinerreaeeeeesenrnereeaens 10
POWET ON/TESEt OPETALIONS. ..ot ittt ittt ettt ettt et ee et ee e et eeeeaieaeeeebeeeeans 11
Incoming-packet CONLIONIET.........oiiiiiiiiiiiiit e ee e 12
Outgoing-packet CONLIOIIET.ooiuiiiiiiiiiiiiiiie e 13
Schedule format for EPROM/RAM.ccooiiiiiiiiiiiiiit it 15
BIU £eStDENCH. 1.ttt e ettt e e e 17
RMU tEStDENCH. ..ottt e et ee e e eaiee e e e 18
MiCTOPTOCESSOT OPETALIONS. ...eeeiuiirieeriitieeeeiieteeraieeeeeeittee ettt eesaeneeeeenneeeeeeneaeeeesannees 19
Typical scheduled aCtIVITIES.ccovuiiiiiiiie ittt e e 23
Ideal CONAILIONS.eiiiiiiit ittt ettt e e et e et e e s see e e e eanaeeeeaaeee 24
Ideal conditions, BIUs and RMU are in perfect synchrony.ccccooceeeinniennn 25
Start-Cycle command, BIU clocks are re-synchronized with the RMU clock........... 26
BIU 1 is powered down for one CyCles.cooiviiiiiiiiiiiiiiiie e 27
BIU 1 is powered down (detail)..........ccccooiiiiiiiiiiiiiniiiie e 28
BIU 1 recovers, Start-Cycle command...............ccoeeiiiirierririeniiiiirieeeeeeiiiree e e, 28

vi

Acronyms
ASIC

BIU
RMU
MUX
VHSIC
VHDL
FPGA
EPROM
RAM
FIFO
FBL/PBW
PLL
DPLL

Mbps

The use of brand names is for completeness and does not imply endorsement by US government.

Application Specific Integrated Circuit
Bus Interface Unit

Redundancy Management Unit
Multiplexer

Very High Speed Integrated Circuit
VHSIC Hardware Description Language
Field Programmable Gate Array
Electrically Programmable Read Only Memory
Random Access Memory

First In First Out
Fly-By-Light/Power-By-Wire

Phase Locked Loop (Analog)

Digital Phase Locked Loop

Mega bits per second

vil

1. Introduction

The purpose of this project is to develop an architecture capable of implementing the fault-
tolerant, fiber-optic backplane proposed by Palumbo in [1]. The development of this architecture is also
intended to assist with the investigations of behavior of the backplane in the presence of faults. The fiber-
optic backplane consists of a set of Bus Interface Units (BIU) and Redundancy Management Units
(RMU) forming multi-channel redundant fiber-optic backplane. Each channel, in turn, consists of a set of
BIUs that are tied to a RMU via separate fiber-optic read and write buses (the action of read and write are
taken from the perspective of the BIUs). Figure 1 is a depiction of the fiber-optic channel. Fault-
tolerance is achieved by replicating several channels and combining the BIU outputs of the channels in
the RMUs to mask any errors or failures before the data is placed on the read buses. In such redundant
system, the RMUs of different channels communicate with each other through separate fiber-optic
backplane write buses. Figure 2 is a depiction of the fiber-optic backplane. The RMUs also provide
global time synchronization across the backplane and timing control through the channel read buses. All
processing and bus accesses are controlled by time, i.c., all data appearing on the backplane can be
uniquely identified by the time at which they become available. The BIUs of the channels are time
division multiplexed onto the channel write bus. The RMU is the only device that writes to the channel
read bus. Because the RMU is fundamental to the backplane's operation, both the channel read bus lines
and the RMU may be replicated to increase reliability. Finally, the RMU can be integrated with a
gateway to a network thus providing fault-tolerant access to remote processing nodes[1].

read bus
/0 it /0 i+1 X 1/0 1
RMU j
BIU i+n BIU i+1 BIU i
write bus

Figure 1. Fiber-Optic channel.

BlUn | eee BIU 1 RMU1 &

BIUn e0e BIU 1 RMU 2

BIUn o0 BIU 1 RMU k

Figure 2. Fiber-Optic backplane.

Analysis of the backplane indicates that development of a single channel is sufficient for a
feasibility study of the proposed backplane. Thus, the architecture developed, as shown in Figure 1, has
been demonstrated with only one channel. In order to incorporate fault-tolerance into the system,
additions required to accommodate multiple channels would have to be made to the RMU. The particular
implementation of the architecture that is presented here enables a RMU to connect to as many as 29
BIUs; however, for testing purposes a maximum of four BIUs are sufficient to demonstrate full channel
functionality.

The architecture is designed, developed, and implemented using the Very High Speed Integrated
Circuits (VHSIC) Hardware Description Language (VHDL) [2]. Time constraints did not allow for a full
hardware implementation; however, large portions of the developed architecture were synthesized and
implemented in hardware using Xilinx Field Programmable Gate Arrays (FPGA) [3] on multiple
prototype boards. These FPGA boards can be installed in Personal Computers (PC) such that the PCs act
as the front-end to the FPGA boards for both programming the FPGAs and for controlling the operation
and data transfer to the FPGA boards during their normal operations. Instead of designing one board to
function as a RMU and designing a different board to function as a BIU, it was decided to take advantage
of the flexibility provided by FPGAs to develop a single design so that a board could be programmed to
function as either a RMU or a BIU.

This report presents the development and test cases of a single fiber-optic channel. In Section 2
the implementation issues, the design, and the development of the architecture are discussed. The
hardware design and development of the architecture are presented in Section 3. Test cases and
simulation results are presented in Section 4. Section 5 concludes this report with a summary of the work

accomplished and a discussion of future enhancements.

Five appendices supplement this report. Appendix A includes the VHDL code for the
components of this architecture. Appendix B contains the C code. Appendix C describes the pin
assignment and layout. Appendix D consists of sample schedules and data packets, and lastly, Appendix
E describes the procedures for using all VHDL tools in the development process.

2. Design and Development

As stated in [1] “to support high speed data transmission, the optical receiver is clocked by a
phase locked loop (PLL) which has locked its internal clock to the incoming data stream. Normally,
switching between multiple data streams would represent a problem as this would require the PLL to re-
lock. In this invention, the multiple transmitters in the BIUs, Figure 1, are themselves clocked by PLLs
which are in turn locked to the data stream produced by the RMU transmitters. The multiple transmitters
thus have the same clock source reducing skew and drift and minimizing lock time for the RMU PLL.”

The proposed backplane requires fast PLLs with very low lock time. Specifically, the proposed
design requires a PLL with a lock time of a few clock ticks while existing PLLs and DPLLs have a typical
lock time of hundreds of ticks. Our investigations at the initial phase of the development process on
existing PLLs and DPLLs revealed that existing commercial products did not meet the stringent
requirements of the proposed design. The design of a new PLL or DPLL requires more study and is
beyond the scope of this work. As a result, a new alternative is developed to 1) Meet the stringent timing
requirements, 2) Allow continuation of the design and development of the architecture, and 3) Maintain
interoperability with the backplane in the advent of new development in PLL technology, and 4) Keep the
added cost to a minimum.

This alternative incorporates the use of a Global Clock over a separate fiber-optic cable, Figure 3.
The Global Clock resides in the RMU and is broadcast to all BIUs in the channel. In this alternative, the
BIUs are assumed to be at equal distances from the RMU of the channel. In other words, the read and
write buses are of equal lengths. Therefore, all BIUs are guaranteed to be in perfect synchronization with
the RMU and, as a result, the switch-time between the channels is at its absolute minimum of one clock
tick. In addition, in the advent of new and fast PLL technology, the PLL output would simply replace the
Global Clock input to the BIUs. The additional cost of this alternative is, therefore, associated with a
transmitter, a fiber-optic cable, and receivers that are dedicated to the broadcast of the Global Clock.

Clock
Data

Read-Bus

BIU (4) BIU (3) BIU (2) BIU (1) RMU

‘Write-Buses
Data

Data
Data MUX

vy Yy

Data

Figure 3. Global clock, fiber-optic channel.

2.1 BIU/RMU

Analysis of the behavior of the RMU and BIU revealed that these modules have so much in
common that the BIU should be treated as a special case of the RMU, Figure 4. In particular, the main
functions of the BIU and RMU are transmission of data, reception of data, and execution of the scheduled
instructions. Of course, RMU interpretation of the scheduled operations is slightly different from the
BIU. The only RMU-specific function is voting on the input data and masking out the faulty BIU(s).
However, this function may be performed by an independent module that complements the BIU module’s
functionality. As a result, both BIU and RMU can be designed to have identical interfaces to the outside
world. Therefore, the terms BIU and RMU are used interchangeably in the implementation sense.
However, every instance of this module requires its own unique identifier. This identifier is set externally
via the BIU_ID parameter. Also, by accommodating for their differences in interpreting the scheduled
operations via an external bit (BIU_OR_RMU), the BIU/RMU architecture can be developed as a single
module. Joint development of the BIU/RMU has the added advantages of requiring less development
time and code maintenance. Also, it reduces the overall ASIC fabrication cost by 50% since one single
die suffices. Therefore, for the remainder of this report, unless specifically stated, all details and
descriptions of this module apply to both BIU and RMU. The VHDL entity declaration and architectural
description of the BIU/RMU are listed in Appendix A.

BIU/RMU

Process Input Data Process Scheduled Operations

Receive Input Data Select Proper Channel

Vote on Input Data

Store Input Data Process Record Status

Process Housekeeping Process Output Data

Legend:
RMU-Specific Operation

Figure 4. BIU/RMU functional descriptions.

The Process Housekeeping module handles the power on and reset conditions by initializing the
internal counters, registers, and resetting the local timers. The details of this process are described in the
Housekeeping section.

The Process Input Data module continuously monitors the incoming data by converting the bit-
serial data stream to parallel words. It then stores the incoming data packet in the appropriate buffers to
be used by the rest of the system. The details of this process are described in the Input Data section.

The Process Output Data module transmits the outgoing data at the specified scheduled time. The
output data are either internal status report from the BIU or output data of the BIU’s associated processor.
Regardless, the output data words are first packetized with the appropriate header and then serialized for
transmission. The details of this process are described in the Output Data section.

The Process Record Status module keeps track of the errors by setting their designated bits in the
status register. The details of this process are described in the Reporting Errors section.

The Process Schedule Operation module manages loading of the scheduled operations from the
ERPOM/RAM by setting the appropriate address lines and issuing the read signal. It then decodes the
instructions and stores them in the appropriate buffers. The details of this process are described in the

Schedule Format and Schedule Controller sections.

The BIU/RMU has two types of interfaces: one to communicate with the BIU/RMU of the
channel and the other to communicate with BIU’s associated processor, Figure 1. The Input and Output
modules are designed to communicate with the BIU/RMU as well as the associated processor. Although
the BIU and RMU exchange data via serial fiber-optic buses, the data to and from the associated
processor of the BIU are exchanged in parallel words using separate FIFOs. In order for this module to
transmit and receive data simultaneously, two FIFQO interfaces are, therefore, necessary to handle the
input and output data flux.

2.2 Packet Formats

The data and status information as well as the commands issued by the RMU are stored in
packets based on one of the formats depicted in the following figure. However, the type of packet format
is based on the nature of the information to be sent to the destination BIUs.

1 Sync-Header ol1l0l -] BU 1d 0 Command
(8-bits) (5-bits) (8-bits)
K KMSR K K K
1| Sync-Header |01 | BIUId |, Count 0 Data eee | Data
(8-bits) (5-bits) (8-bits) (8-bits) (8-bits)
K KMSR K K K
Sync-Header BIU Id Count Status eoe Status
U 8wbitsy (0191 7] sobits) |0 (8-bits) Ol (&bits) 01 (8-bits)
Sync-Header, 8 bits =1111_1111
Sync-Pattern, 10 bits =1_1111_1111_0
BIU Id, 5 bits, identifies the destination of the packet.
Reserved =0_0000
Global Id, Reserved =1_1111
K = Sync Bit =1 ==> Sync-Header follows

=0 ==>Data, Command, or Status follows

M = Mode Bit =1 ==>Command
=0 ==> Data or Status

S = Status Bit =1 ==> Status
=0 ==>Data

R = Reserved Bit

Figure 5. Packet formats.

All packet formats share a common scheme. This underlying scheme consists of three 9-bit
words where each word is constructed from an 8-bit byte that is preceded with a synchronization bit (K).
The synchronization bit is zero except when indicating the Sync_Header.

The first word of a packet is the Sync_Pattern, the second word is a collection of flags and
BIU/RMU identification, and the third word is either a command or a count. To achieve synchronization
over a distance between BIUs and RMU, the Sync_Pattern (1_I1111_1111_0) is designed so that it is
guaranteed to be unique throughout the system. The Sync_Pattern is a unique 10-bit pattern consisting of
a string of 9 ones followed by a zero. Since the first bit of the second word has to be a zero, that bit is
used as part of the Sync_Pattern.

The second word consists of three 1-bit flags; Mode (M), Status (S), and Reserved (R) flags,
followed by a 5-bit identification field that is used for both BIU and RMU. The significance of the third

word depends on the flags that are set. If the Mode (M) bit is set, then the third word is a command for
the BIUs; otherwise, it is a count of data or status words to follow. In this case, the packet will be more
than three words long. Since count is an 8-bit field, the maximum number of status or data is limited to
255 words per packet.

If the Status (S) bit is set, then the packet holds status information and thus it is forwarded to the
output FIFO. Otherwise, it is a data packet intended for the BIU whose identification is in the packet
header. In this case, only the target BIUs fetch the packet and forward it to their associated processors
(via the output FIFOs), while all other BIUs simply ignore the packet.

The BIU Id can be used as another layer of redundancy to check against scheduled operations for
local detection of failures.

The Reserved (R) bit is not used at this time. It could be used as part of the BIU/RMU
identification and to expand the number of BIUs in a single backplane channel.

2.3 Performance

The calculation of the read bus bandwidth efficiency as a function of packet size follows.

Packet Overhead = MUX Switch Time + Data Packet Header + Overhead per Data Byte
where,

MUX Switch Time =1 clock tick =1 Word = 9 bits

Data Packet Header = (Sync_Header + Flags) + BIU_Id + Count of Data Words

=3 Words = (3 * 9) bits
Overhead per Data =1 bit

So, with n = Number of Data Words as specified in Count Field,

Overhead =9+B3*9)+(1*n)=4*9 +n=(36+n) bits

9%Overhead = Overhead / Packet Size * 100 = (36 + n) bits / ((4 + n) * 9) bits * 100
and

%Efficiency =1-%O0verhead=n*8/((n+4) *9)

As evident from the above equation, as n grows, so does the %Efficiency. The read bus
bandwidth efficiency is displayed as a function of data bytes in a packet in the following figure. As is
shown, the efficiency approaches the maximum (about 89%) for moderate size packets.

Effiiency

100

Bandwidth Efficiency

920

80

70

60

50 -

40

30

20

o
O =

o o o (=) o (=] o o (=] (=) o o o (=) o o o o o (=) o o o (=) o
-~ o~ 32 < w © ~ © (o] =1 -~ N 52 ~ w0 «© M~ © (=2 (=] - N o0 < w0
- - - - - - - - - - N o~ o~ o~ o~ o~

Data Bytes

Figure 6. Channel read bus bandwidth efficiency as a function of packet size.

2.4 Reporting Errors

The status register, Status_Reg_0, is introduced to keep track of errors at various sub-modules.
Figure 7 provides a detailed description of the status register. Various bits of this register indicate
specific errors and, therefore, are set by their designated sub-modules upon detection of errors. The
content of this register is transmitted at the scheduled times and after setting the Status (S) bit of the
packet.

Bit Error Name Error Description

0 Read_FIFO_Error_1 Error in input FIFO data packet header

1 Read_FIFO_Error_2 Attempted to read from empty input FIFO, i.e. missing data
2 Receive_Error_1 Data didn’t arrive within the expected reception window

3 Receive_Error_2 Received unexpected data

4 EPROM_Error_Flag Didn't detect end-of-schedule in the EPROM/RAM

5 None None

6 None None

7 None None

Figure 7. Status_Reg_0, error bit assignments.

2.5 Housekeeping

After power on and upon reset the BIU/RMU resets its internal counters, clears its registers, and
resets its transmitter and receiver clocks. Figure 8 depicts the flowchart of the power on and reset
activities. If the BIU_OR_RMU bit is set high, the architecture is that of a BIU. It goes into a waif state
where the BIU awaits the Start_Cycle command from the RMU. Otherwise, the architecture is a RMU
and begins reading the scheduled operations and takes appropriate actions at the right times. As further
described in Section 3.8, Schedule Format, the first two instructions of the schedule are reserved for the
RMUs only. The first instruction indicates broadcasting of the Start_Cycle command to all BIUs in the
channel while the second instruction is a wait instruction for the RMU for the specified delta time so that
the BIUs can catch up with the RMU. Upon receiving the Start_Cycle command, the BIU resets its
internal counters, clears its registers, and resets its transmitter and receiver clocks. At this time, all BIUs
are synchronized with respect to the RMU. The BIUs and RMU then repeat reading the scheduled
operations and execute scheduled instructions at the specified times.

10

Power on / Reset

Reset Counters
Clear Registers
Start Clocks

‘

BIU_OR_RMU ?

RMU

v

Read scheduled
instructions and
operate on them

BIU
—>

Wait

Yes

Reset Counters
Clear Registers
Adjust Clocks

Figure 8. Power on/reset operations.

2.6 Input Data

Data reception requires continuous conversion of bit-serial data stream to parallel bytes. The
incoming data bit stream is monitored to detect the Sync_Pattern. Figure 9 depicts the flowchart of the
incoming-data controller. Upon detection of the Sync_Pattern the receiver clock is adjusted so that the
following data are retrieved at appropriate word boundaries (see Section 3.6 System Clocks). If the
BIU_ID part of the second word does not match the BIU_ID of the particular instance of this module,
then the Status bit is examined. If the Status bit is not set then the rest of the data packet will be ignored.
Otherwise, the packet is treated as a Status packet and is simply routed to a FIFO in its entirety. If the
second byte matches the BIU_ID of a particular instance of this module, then the Mode bit is examined.
If the Mode bit is not set then the rest of the data packet will be treated as a data packet for this module
and will be routed to a FIFO. Otherwise, the packet is treated as a Command packet from the RMU and

the proper action will be taken.

11

i

Get First Byte

No Yes

Get Second Byte

Status Bit=17?

iYes

Process Status

Mode Bit=17?
(Command)

Process Data |g¢—! Process Command

Figure 9. Incoming-packet controller.

To accommodate for minor variations in the lengths of the busses, a reception window is
established to provide an added flexibility to the architecture. The duration of this window is controlled
externally and can range from 0 to 7 byte clock ticks by setting the three Switch_Time_In bits. The
maximum reception window of 7 byte clock ticks allows for a maximum of 7 bytes * 9 bits per byte * 10
ns per bit = 630 ns = 630 feet variations in the lengths of the busses (assuming a 100 MHz clock, and that
light travels 1 ft/ns). The reception window starts at the scheduled data reception time, and lasts as long
as the reception window size or until a data packet is received. If the scheduled data packet is not
received during this time or if it arrives outside this window, then the errors are reported by setting their
designated bits, bits 2 and 3, respectively, in the error register Status_Reg_ 0. Figure 7 provides a detailed
description of the status register.

Voting of the data is an RMU-specific function and is performed by all RMUs in a redundant
multi-channel system to provide fault tolerance for the full FBL/PBW backplane. In a redundant multi-
channel system, all RMUs broadcast their input data to all other RMUs as data become available.
Therefore, a BIU output is available to all RMUs at the same time. Each RMU then votes on the data it
receives from RMUs of other channels and on the data from the corresponding BIUs of its channel,
Figures 1 and 2. In case of any discrepancy, the faulty BIU is identified and masked out. The voted BIU

12

output is broadcast in the local channels. Since the design and development of the voter module is
beyond the scope of this work, the voter implementation is left for future work.

2.7 Output Data

Data transmission requires reading a data packet from a FIFO, checking the data integrity by
examining the packet header, and converting the data bytes into a continuous serial bit stream. Figure 10
depicts the flowchart of the outgoing-data controller. If the packet header, specifically the Sync_Pattern,
is not detected at the expected time, then an error is registered and the transmission operation is aborted.
Also, to avoid issuing any commands by the microprocessor to the RMU and to safeguard against any
undesirable side effects, the Mode bit is examined. As previously described in Figure 5, if the Mode (M)
bit is set, then that word is a command for the BIUs. Therefore, to guarantee that the commands are
issued and, thus, the Mode bit is managed from inside the FBL/PBW backplane architecture (specifically
only by the RMU), the Mode bit is examined and if it is set by the BIU’s associated processor, then an
error is registered and transmission operation is aborted.

i

Get First Byte

No Yes
Get Second Byte

Read and
transmit the rest
of the packet

Mode Bit=17?
(Command)

Record Error
and
Stop

Figure 10. Outgoing-packet controller.

2.8 System Timers
To synchronize and maintain synchronization between the receiver of a BIU/RMU and the

transmitter of another BIU/RMU at the proper word boundaries, the receiver needs to constantly adjust to
the transmitter. As a result, the receiver part of a BIU/RMU must operate with a different timer than the

13

rest of the unit. To prevent propagation of phase shifts in the receiver timer to the rest of the system and
safeguard against any side effects, a second timer, the transmitter timer, is introduced. Therefore, the
BIU/RMU has two timer regions: a receiver timer region and a transmitter timer region. To maintain
design flexibility, provisions are made so that the transmitter timer can be adjusted and synchronized with
the receiver timer; however, it must only be done when the BIU/RMUs are in the idle state. The
synchronization of the transmitter timer with the receiver timer is achieved as a scheduled event and at the
desired synchronization interval via a RMU command.

Separation of the two timers has the added advantage of applicability to a broader class of
architectures by eliminating the fix distance constraint between the BIUs and RMU of one channel as well
as between the RMUs of multiple channels. In addition, the cost of the second timer, four flip-flops, is
negligible.

Although the data in and out of the BIU/RMU are serial bit streams, the BIU/RMU operates at 9
bit word boundaries. Therefore, the BIU/RMU requires system timers that operate at the word level.
Since the serial data bit streams are 9-bit words, the system clocks are derived from the incoming bit
clock by dividing the bit clock by 9. Operating at the word level has the advantage that most of the
BIU/RMU operates at a slower clock rate and the peripherals such as the FIFOs and EPROM/RAM can
be slower devices. This slower clock rate allows for less stringent requirements on the signal load and
routing, and therefore, is more cost effective. In addition and from the user’s perspective, delta time for
the scheduled operations will be with respect to the system timers and, hence independent of the
communication rate.

2.9 FIFO

In order to make the simulation results comparable to those of the prototype boards, the generic
FIFO module developed for this design is modeled after Am7204A" FIFO chips. This VHDL model is
comparable with the Am7204A FIFO in both interface and timing characteristics. In addition, this VHDL
FIFO model is a generic model so that by adjusting its parameters, it can be defined to be as wide, deep,
and fast as necessary. This VHDL model is synthesizable and the VHDL code is included in Appendix A.

2.10 EPROM

For simulation purposes a high level VHDL model of a generic EPROM was developed that is
pin-to-pin and package compatible with a generic RAM. However, for design flexibility, the interface for
this module is modeled after the NM27C128, 128k-word x 8-bit EPROM? and HM6264ALSP, 8192-word
x 8-bit High Speed Static CMOS RAM?® which are pin-to-pin and package compatible. The EPROM
module contains the scheduled instructions and the relative time of their operations. The EPROM has to
be 16-bit wide and deep enough to hold all scheduled events. The schedule format is described in the
following section and schedule examples are listed in Appendix D.

" Am7204A is a CMOS FIFO and a product of the Advanced Micro Devices.
? Products of National Semiconductor Corporation.
* Products of HITACHI Corporation.

14

2.11 Schedule Format

The scheduled events and instructions are stored in an EPROM or a RAM based on the format
depicted in the following figure.

Delta Time Transmit Receive Status/Data/Command BIU/RMU Id
(8-bits) (1-bit) (1-bit) (1-bit) (5-bits)

EPROM/RAM Width = 16 bits
Status/Data/Command = S/D/C

AT = Delta Time >= (0 ==> Delta Time between consecutive instructions
Tx = Transmit Bit =1 ==> Transmit
=0 ==>No-op
Rx = Receive Bit =1 ==>Receive
=0 ==>No-op
S/D/C = Status Bit =1 ==> Data for BIU and Command for RMU
=0 ==> Status
Id= BIU Id =1..30 (base 10)

End of schedule delimiter is 31 in base 10 (i.e. XXFF in base 16)

Tx Rx S/D/C Descriptions
0 0 0 RMU and BIU No-op
0 0 1 N/A
0 1 0 N/A
0 1 1 RMU and BIU Receive Data
1 0 0 RMU and BIU Transmit Status
1 0 1 RMU Transmit Command and BIU Transmit Data
1 1 0 N/A
1 1 1 RMU and BIU Stop
Example:

In the following schedule example, RMU Id = 27 and Global Id = 31.

AT Tx Rx S/D/C 1d Descriptions
10 1 0 1 27 RMU will transmit Start_Cycle command after 10 clock cycles
5 0 0 0 27 RMU will do nothing and waits for 5 clock cycles until BIUs restart
5 1 0 0 27 RMU will transmit its status after 5 clock cycles
1 0 1 1 31 All BIUs should expect to receive data in 1 clock cycle
4 1 0 0 1 BIU 1 will transmit its status information after 4 clock cycles
2 0 1 1 31 All BIUs should expect to receive data after 2 clock cycles
19 1 0 1 3 BIU 3 will transmit its data after 19 clock cycles
1 0 1 1 4 BIU 4 should expect to receive data after 1 clock cycle
15 1 1 1 31 i.e., OFFF, all BIUs stop reading the schedule after 15 clock cycles

Figure 11. Schedule format for EPROM/RAM.

15

The scheduled events are 16 bits wide, i.e. two 8-bit bytes. The little-endian notation is used to
describe different segments of the schedule events. The first byte is reserved for delta time. This allows
for a time interval between two consecutive events to be at most 256 system timer ticks. However, to
extend this time interval beyond 256 clock ticks, no-op instructions should be inserted between the actual
events. The three most significant bits of the second byte are used in the communication process.
Specifically, bit 7 of the second byte indicates transmission event, bit 6 indicates receiving event, and bit
5 indicates the nature of the event as being status, data, or command. The five least significant bits, bits 4
through 0O, identify the RMU/BIU that is scheduled to take the appropriate action after the delta time has
clapsed. Therefore, this format allows for one RMU and a maximum of 29 BIUs per channel.

The first two instructions of the schedule are reserved for the RMUs only. The first instruction
indicates broadcasting of the Start Cycle command to all BIUs in the channel. The second instruction is
a wait instruction for the RMU for the specified delta time so that the BIUs can catch up with the RMU.
The duration of the wait time is a function of the communication means and the delay in processing of the
Start_Cycle command by the RMU and BIUs. The wait time, therefore, is given by the following
equation:

Wait Time = Command Process Delay + Read Bus Delay

The Command Process Delay is a constant delay and is determined to be five system timer ticks
for this implementation. It is the total delay in constructing the package, transmitting the Start_Cycle
command by the RMU, and receiving the command by the BIUs. The Read Bus Delay is determined by
the time it takes for the data to reach from the RMU to the BIUs of the channel and is directly
proportional to the length of the bus. Since the BIUs are assumed to be of equal distances from the RMU
of the channel, after elapse of the wait time, the BIUs will be synchronized with respect to the RMU. The
example depicted in Figure 11 indicates a Delta Time of 5 system timer ticks. The second instruction of
the schedule corresponds to the read bus delay of zero.

When the bit 7 of the second byte is set high, it is interpreted by the BIUs as a transmit
instruction. However, the RMU interprets it as a switch channel instruction and uses the BIU identity
field, bits 4 through 0, as the multiplexer select lines to switch to the appropriate BIU write bus.

2.12 Schedule Controller

Reading of the scheduled operations from the EPROM/RAM requires setting the appropriate
address lines and issuing the read signal. The Schedule Controller manages loading of the instructions
from the EPROM/RAM. The scheduled instructions are pre-fetched, decoded, and stored in appropriate
buffers. In particular, the time field is extracted and stored in the Delta_Time_Clock and the instruction
field in the Instruction_Buffer registers. The current instruction is then decoded. The corresponding flags
that initiate the execution of the specific operations, such as transmit and receive, are raised only after the
clapse of the delta time. Section 3.9 provides a detailed description of the scheduled instructions in
EPROM/RAM.

16

2.13 BIU Testbench

The BIU testbench, Figure 12, encompasses the BIU/RMU and all the necessary components for
its normal operations as a separate prototype board. The adjoining components are an EPROM/RAM that
contains the scheduled events of operations, a FIFO for the input data, a FIFO for the output data, and a
microprocessor (PC) with its associated input and output files that acts as the BIU font-end. A single
external bit (BIU_OR_RMU = VCC) specifies its functionality to be a BIU. These components are an
integral part of testing BIU/RMU functionality.

1
A
BIU-Id | | vee
L i
5 I I
: I
. v
FIFO-Out Data_Out Data Data Clock
BIU OR RMU 13
3 3
3 16 EPROM/
¢ uP Data Bus BIU/RMU RAM
[Control (Schedule)
3 TORD
8 IOWR
3 i > Data In
FIFO-In g 5 @ O Ipjagq cs INTR
é3 8
Y
IORD IOWR Data
AEN Address 8 Input File
Legend:
Wire —_—p PC g
Fiber — ———__ > Output File

Figure 12. BIU testbench.

2.14 RMU Testbench

Analysis of the behavior of the RMU revealed that by preserving the BIU interface to the FIFOs,
the RMU’s interface could be defined as a special case of the BIU’s interface. As a result, one FIFO is
used for both input and output of data for the RMU.

The RMU testbench, Figure 13, encompasses the BIU/RMU and all the necessary components for
its normal operations as a separate prototype board. The adjoining components are an EPROM/RAM that
contains the scheduled events of operations, a single FIFO for both the input and output data, and a
microprocessor (PC) with its associated input and output files that acts as the RMU front-end. The RMU
testbench, therefore, is similar to the BIU testbench and by proper setting of a single external bit
(BIU_OR_RMU = GND), its functionality is distinguished from that of BIU. These components are an

17

integral part of testing BIU/RMU functionality.

£ A
I
RMU-Id | | GND !
. o
I
I
. Ly
Data_Out Data Data Clock
BIU OR_RMU 13
FIFO- 16 EPROM/
Out - , |uP Data Bus BIU/RMU RAM
In Control (Schedule)
IORD
8 IOWR
3 p Data In
Flags Ccs INTR
é3 8
Y
IORD IOWR Data
Address 8 Input File
AEN
Legend:
Wire R PC g
Fiber _____ > Output File

Figure 13. RMU testbench.

2.15 Microprocessor (PC)

The microprocessor (PC) is a high level representation of a generic microprocessor and is
designed for simulation and testing purposes only. For simulation and testing flexibility, the
microprocessor is designed so that it could be tailored to represent processors with different read cycles,
different write cycles, and different clock rates. Also, different instances of this module can be
programmed to transmit different counts of data packets with different data packet sizes. However, a
particular instance of a microprocessor transmits a given number of data packets of the same sizes. Also,
the microprocessor is assumed to have an identical copy of the BIU/RMU schedule.

The microprocessor operations are shown in the following flowchart, Figure 14. Since the
microprocessor is assumed to be independent of the BIU, the communication between the BIU and its
associated microprocessor is therefore asynchronous. As a result, the microprocessor receives an
interrupt from its associated BIU at the start of every schedule cycle and after receiving the Start_Cycle
command from the RMU. The microprocessor will reset the FIFOs, sample the sensors, send the data to
the input FIFO, and then acknowledges the interrupt to the BIU. Note that the microprocessor can read
processed data from the output FIFO at any time. This data is assumed to be stored in cither a large cache
or an output file. For simulation and testing purposes the data sent to the input FIFO is the output of
counters internal to the microprocessor module.

18

Interrupt From BIU

Reset FIFO (s)

'

Sample external
input data and
send data to BIU
via Input FIFO

'

Acknowledge
Interrupt

'

Figure 14. Microprocessor operations.

2.16 Fault Injection

There are many methods of injecting faults in the system. Three methods of injecting faults into
this system are described here. The first is the brute force method where a BIU is turned off. Since at
power down the exact state and condition of the BIU is not known, this method of fault injection is
random. In simulation, however, turning off the BIU can be accomplished by forcing the BIU to reset
where it waits in the idle state during the simulation process. This method of fault injection covers the
fail silent scenario.

The second way of injecting a fault is through the schedule and by instructing the BIU to stop
transmitting data at a specific time. In effect, the BIU goes off line at the designated time. As a result,
the time of fault occurrence is predicable. Since the fault can be scheduled to occur at a specific time, this
method is extremely helpful in examining integrity of the system in the presence of a fault at different
states of the system. This method, therefore, provides a general means to analyze the architecture under
various crash failures.

The third method is also through the schedule but by switching the channel to another BIU,
preferably an unattached BIU. As a result, even though all BIUs are functioning normally, switching to a
bogus channel will in effect disrupt proper routing of the intended BIU output to the target BIUs. This
method can simulate data packet corruption through the write bus as well as BIU babbling.

19

These fault injection methods cover only a subset of the faults that this architecture is designed to
tolerate. In the interest of time, further failure analysis and evaluation of this architecture is left for future
work.

2.17 Fault Recovery

In the case of brute force method where a BIU is powered down, the BIU can be reintroduced
into the system upon power on and at the start of the next schedule cycle. At power on, the BIU resets its
internal registers and enters the idle state, Figure 8, awaiting the Start_Cycle command from the RMU
before restarting its normal operations. Therefore, this fault recovery capability lends itself to upgrading
the system by taking the BIUs off line, one at a time, and without having to power down the whole
system.

In all other cases, where a BIU is either babbling or is not transmitting data, the BIU may recover
from the fault provided that the fault is not persistent. In that case, the BIU may recover at the start of the
next schedule cycle and upon receiving the Start _Cycle command from the RMU. However, if the fault
persists for more than one schedule cycle, then the BIU may never recover.

2.18 Reporting Faults

Regardless of the nature and timing of the faults, as far as the rest of the system is concerned, the
symptoms are the same. These symptoms eventually show up on the read and write busses. When
matched against the scheduled activities on these busses, the faulty BIU and nature of the fault is
identified. The symptoms indicate whether the faulty BIU is babbling or is not transmitting at the
scheduled time. These errors are reported by setting their designated bits, bits 2 and 3, respectively, in the
status register Status_Reg_ 0. Figure 7 provides a detailed description of the status register. A more
descriptive error reporting would require time stamping the errors. However, this implementation is left
to future enhancements.

20

3. Hardware Development

The FBL/PBW backplane was developed using VHDL. The VHDL code was synthesized using
Synergy, a Cadence product, and targeted for the Xilinx FPGAs [3]. The FPGAs along with other oft-
the-shelf ASIC devices were used to construct a prototype board that would plug into the PC-AT bus.
The PC was then used as the front-end to the prototype boards for both programming the FPGAs and for
controlling the operations and data transfer to the boards during the normal operations. Instead of
designing one board to function as a RMU and designing a different board to function as a BIU, it was
decided to take advantage of the flexibility provided by FPGAs to develop a single design so that a board
could be programmed to function as either a RMU or a BIU. To be able to program the FPGAs, a PAL
was used to decode the base address of the I/O ports on the prototype board. For design flexibility, a
generic interface was designed so that any microprocessor could interface with the board during its
normal operations. This generic interface was separately programmed on a XC3020 [3]. The rest of the
VHDL code encompasses the BIU/RMU module and was programmed on a XC4005A [3] that was
selected for its size and larger number of I/O pins than the XC3020. The prototype board was wire-
wrapped, tested, and its functionality verified. The prototype board functioned at 40 Mbps and
demonstrates that the FBL/PBW backplane implementation was feasible.

3.1 PAL

The PC interface logic* for programming the XC3020 of the prototype board was implemented
using a PALL22V10°. The base address of the prototype board was 300H. Address 306H was used to
reset and address 307H was used to reprogram the XC3020 FPGA. The rest of the addresses were used to
interact with the FIFOs and XC4005A. When resetting the XC3020, bits O and 1 of the PC data bus were
used to control the RESET and Done/Program signals of the XC3020, respectively. For programming of
the XC3020 the PC data bus bit-0 was used to download the binary file to the XC3020. The VHDL
implementation of this interface is listed in Appendix A, the related C code is listed in Appendix B, and
the pin assignment is listed in Appendix C.

*IBM, “IBM Technical Reference for Personal Computer AT, # 6280070.”
* Product of AMD Corporation.

21

3.2 Address Assignment

The address assignment and their purposes in the prototype board are as follows:

New Address Device Function

300H XC3020 Read/Write FIFOs

301H XC3020 Read status of FIFOs

302H XC3020 Write status (Reset FIFOs)
303H XC4000 Transfer Data

304H None None

305H XC3020 Reset and Program XC4000
306H PAL Reset XC3020

307H PAL Program XC3020

3.3 XC3020 and Microprocessor Interface

The XC3020 was programmed with a generic interface to allow a BIU and its associated
application microprocessor to exchange data. The application microprocessor is assumed to be either an
Intel 80X86 type or Motorola 68XXX type. In the prototype board the host PC played the role of
application microprocessor after initial board setup and programming of the FPGAs. Since the
application microprocessor accesses the FIFOs through its data bus and performs either read or write
operation, the output bus of the output FIFO and the input bus of the input FIFO are tied to the
microprocessor data bus via a bus controller. When exchanging data with the FIFOs, the bus controller
relinquishes control to the microprocessor; otherwise, it tri-states the bus so that there will not be any
interference with the microprocessor’s normal operations. The VHDL implementation of this interface is
listed in Appendix A and the related C code is re listed in Appendix B.

3.4 Programming XC4005A and Testing FIFOs

Upon setting up the prototype board and programming the XC3020, the XC4005A can be
reprogrammed to implement the BIU/RMU functionality. Independent programming of the XC3020 and
XC4005A allows for ease of modification to the BIU/RMU without having to turn off and on the PC and
setting up the prototype board. The control signals of the XC4005A, i.e., Program and Done signals, are
brought into the XC3020, and the XC4005A status are stored in a status register. Contents of this register
are then accessed by the microprocessor for test and debugging purposes. Also, to enable monitoring of
the status of the FIFOs, the FIFO status flags, e.g., Full-Flag, Empty-Flag, and Half-Full, are also stored
in a status register and are accessed by the microprocessor. The VHDL implementation of this interface
is listed in Appendix A and the related C code is listed in Appendix B.

22

4. Simulation Results and Test Cases

In this section two test cases are presented to demonstrate the capabilities of the FBL/PBW
backplane. In the first test case the system operation under ideal conditions is examined. In the second
case failure of a BIU due to power down or reset is studied.

The single channel under study consists of one RMU and four BIUs. To examine the operations
of the system under various conditions, a generic schedule is setup to encompass all aspects of the fault
injection and recovery while exercising all BIUs. In these test cases the schedule consists of transmission
windows for the BIUs in the following order: 1, 2, 3,4, 1, 2, 1, and 3. The following figure shows the
typical activities of the BIUs during one scheduled period in the absence of faults.

BIU_2 output BIU_4 output

frms_pat o §

fdata, st = 4
Suin sut ¥ s @
Suis wet 2 = @
Seds il 3 - 8
Shls wat & s §

Figure 15. Typical scheduled activities.

In Figure 15 and subsequent figures, rmu_out is the output of the RMU that appears on the read
bus. rmu_in is the input data to the RMU after multiplexing the BIU outputs from the write buses. biu_in
is the same as rmu_out but at the input of the BIUs. mux_select indicates the selection value and hence
the particular BIU output to be routed via the RMU. biu_out_i corresponds to the output of the BIU i that
appear on its write bus. The horizontal axis is the time axis.

4.1 Ideal Case

In this case as shown in Figure 16, the system operation is shown under ideal conditions where
the delays in the read and write busses are assumed to be zero and no fault exists. In this case, the BIU
and RMU clocks are shown to be in perfect synchrony. The Schedule for this test case is listed in
Appendix D.

23

e Bk

Vo el o~ §

ko8

i w v @

Ak L PREHRETY
Vdaty sut s @

hie pet § = B

Fivlig owt R o~ B

Vhiv neg 3o B

i st R o= B
Vulfalfrtsoyne Setortied ¢ 8
Velaliwiffived hete clogk
e BT fear i atle byte sl
RIS S sene Sebseted ¢ §
Futfalfulftined byte clogl = §
VislfaRrutAsariakle_byte sleck §
et oatut Finte pt_sut « B '
Vel otagiabal et suele bar

R R ET R T T REELR] R E LR E R R RIS R ENER EESREE R BT R SRR S R R R S R SR LERE LR EE LS R ERE R EETR EE T EET R B RS :

Transmission slots for BIUs 1 2 3 4 1 2 1 3
in one schedule cycle:

Figure 16. Ideal conditions.

Figure 17 and 18 are the details of Figure 16. In Figure 17 transmission of the BIU_3 can be
traced to appear at the output of the RMU after a few clock ticks. In Figure 18 the Sync_Header appears
at the output of RMU and is detected by the BIU_1. Upon resynchronization, BIU_1 issues an interrupt
to its associated processing element.

24

BIU 3 transmission

Fleii Am o=
fig melesl = SHTEEHN

fHatiE suy v 8§

FaBfe RSO Y Ssgen Setectsg o~ R
FafdsBf IS P ned bate glack =
WBRPuYSsarlanle byt
SETREET B TR TR S gl o T € U |
EREL ST RS 0) oga B0 R
SudfsBfaaeeriable bty clsek
Fulfelfudsiabrpl ail » B
vt fglobsl pesel opels bay

BIU 3 output appears at the output of RMU

BIU 1 and RMU clocks are synchronized

Figure 17. Ideal conditions, BIUs and RMU are in perfect synchrony.

25

Sync_Headers

e st o« 8 R i \
Vi Bw s § ()
Vil dn = B N\

Vain selent = 101 BR8LY \\ . o

Fata sel - @

Voldelfelfsyne Svtenied = B
VoRdelfet eE e bpte plesk = § 73
S 3 ek
ffulifetfaung Setented ~ &

Faifossglabal resst oyl bBae

BIU 1 detects Sync_Header and resynchronizes with RMU BIU 1 sends interrupt to PC

Figure 18. Start-Cycle command, BIU clocks are re-synchronized with the RMU clock.

4.2 Failing a BIU

Forcing the BIU to reset simulates, for example, failure of a BIU due to loss of power. In this test
case, the system starts with all BIUs functioning normally. BIU 1 is then forced to reset in the middle of
a scheduled period. As a result, BIU 1 (biu_our_1I signal in Figure 19) stops executing scheduled
instructions and is taken off line. Figure 19 depicts system activities for three consecutive scheduled
cycles. As evident from Figure 19, BIU 1 (biu_out_1) stops transmitting for the rest of the second
scheduled cycle. Figure 20 is a detailed picture of Figure 19 and depicts system activities for the duration
of the second cycle. In case of loss of power, BIU 1 will remain off line. However, after it is powered
on, BIU 1 will recover at the start of the next scheduled period. The BIUs have similar behavior in the
case of reset. In other words, if a BIU is reset during normal operation, it will recover and join the system
at the start of the next scheduled period although the RMU may choose to mask it out. Figure 21 provides
the details for the recovery of BIU 1. The Schedule for this test case is listed in Appendix D.

26

BIU 1 Fails

bl fs =

fhei meleRt = EREHRIEY i

itk ¥ = B Ty i]

sl f_fi % w? - m o - N e

‘eraltiiseariatle byte sleck T e }
futfaffuidsgne gebenteg = 4 S ' ;] .
fwbfaffut St et ke clogk =
Seifadfutlfvariakle byte slesk i
et A TERrpE St » B O S— ' ... i
FEEATAEORAE ER ;

Schedule cycles 1 2 3

Figure 19. BIU 1 is powered down for one cycles.

27

g ESER
HESS B LS ens Sebaeted - @
Fuiisliuistised Sute sluck =
*afe i deariahle pbe nlay
Sutfeldnifiatept sut = 8§
Fuianidniotal resel_spcie Bar

Figure 20. BIU 1 is powered down (detail).

%*‘uﬁ,&“& Brusfearishie L
FutdeliutsiaRrpt put « 2
uisvtonlanel revsd pgole B

Figure 21. BIU 1 recovers, Start-Cycle command.

28

5. Summary

A single channel, fault-tolerant, fiber-optic backplane was developed to study the feasibility of
the proposed architecture by Palumbo [1]. This backplane also assists with the investigations of behavior
of the architecture in the presence of faults. The particular implementation of the architecture that is
presented here enables a RMU to connect to as many as 29 BIUs; however, for testing purposes a
maximum of four BIUs are sufficient to demonstrate full channel functionally. The architecture is
designed, developed, and implemented using VHDL. Time constraints did not allow for a full hardware
implementation; however, a large segment of the developed architecture is synthesized and implemented
in hardware using Xilinx FPGAs on multiple prototype boards. The prototype boards are designed so that
they can be configured to function as either a BIU or a RMU. Analysis of the test cases shows the
feasibility of the backplane as well as backplane integrity in the presence of faults and recovery from
faults.

5.1 Future Enhancements

There are two areas that require enhancements. The first is the design and development of a voter
module for the RMU so that the backplane can be replicated and the proposed architecture can be studied
in its entirety. The other enhancement is the introduction of a new parameter in the schedule, probably a
third byte, to account for the variable length buses and to make the switch-time overhead minimal. This
feature could replace the data arrival window currently implemented and thus maximize bus utilization.
This parameter, delta time, needs to be associated with BIUs and its value needs to be an indication of the
distance to the RMU so that the RMU switches the multiplexer after this delta time.

29

References

[1] Dan Palumbo: Fault-Tolerant Processing System. U.S. Patent Number 5,533,188, July 2, 1996.
2] IEEE Standard VHDL Language Reference Manual, IEEE 1076-1987.

[3] Xilinx, “The Programmable Gate Array Data Books,” 1992 and 1994.

30

Appendix A
VHDL Codes

File Conventions:

211 modules are geparated into entity and architecture pairs and
are stored in separate files. The file name convention used is as
follows:

filename filetype.vhd

where, in order to maintain the file names compatibility on the PC and
the workstation the filename is restricted to only six characters.
The filetype is a single character and can be e for entities, a for
architectures, t for testbenches, or p for packages. 2All files have
the same vhd extensions. For instance, the FIFO module is stored in
fifo e.vhd and fifo a.vhd files.

A1l files have a document section where the file attributes
including the author, file name, file use, and all of the activities
are chronologically described.

Naming Conventions:

The reserved words are in lower cases while the user defined names are
either all in upper cases or at least the first character is in upper
case. All user defined names are as descriptive as possible and
underline characters are used to make them legible.

The I/0 signals have one of the following forms:
Signal Name In for input signals,
Signal Name Out for output signals, and
Signal Name In Out for input and output signals.

Active low signals are defined as:
Signal Name Bar

31

File Name:

Host Machine:
Target Machine:
Environment

Organization:
Project:
Author:
Creation Date:

Name /Number :
CNSTNT_P.VHD

Abstract:

CNSTNT_2.VHD

GATEWAY 486/33 (IBM AT Clone)

GATEWAY 486/33 (IBM AT Clone)

Model Technology VHDL Simulation for Windows (Ver 4.2e)
DOS Version 6.2

NASA-LaRC

Fly By Light - Power By Wire
Mahyar R. Malekpour

3/19/96

(FBL-PBW)

(entity/architecture)

Acronyms/Abbreviations:

FBL/DPBW

Dependencies:
none

Global Objects:

Exceptions:
Machine/Compiler Dependencies:
Revisions:

Modified on: 4/9/1996

by: Mahyar Malekpour
Address Device Use
PORT_ADDRESS_0 XC3020 Read/Write FIFOs
PORT_ADDRESS 1 XC3020 Read Status of FIFO
PORT_ADDRESS_ 2 XC3020 Write Status (reset FIFOs)
PORT_ADDRESS 3 XC3020 Transfer data between FIFOs
PORT_ADDRESS 4 Not used
PORT_ADDRESS_5 XC3020 Reset and Program XC4000
PORT_ADDRESS_6 PAL Reset XC3020
PORT_ADDRESS_7 PAL Program XC3020
Revisions:

Modified on: 4/18/1996

by: Mahyar Malekpour

Changed port names here instead of in the INTRFC_A.VHD file.

-- Modified on:

- by

-- Added Data_Lengt

8/9/1996

Mahyar Malekpour
h Plus_1 and Sync_Pattern.

library IEEE

i

use IEEE.std_logic_1164.all ;

package CNSTNT_P is

constant PORT_Length integer := 2 ;

constant Data_ADDRESS std_logic_vector (PORT_Length downto 0)
constant Status_ADDRESS std_logic_vector (PORT_Length downto 0)
constant Command_ADDRESS std_logic_vector (PORT_Length downto 0)
constant PORT_ADDRESS_3 std_logic_vector (PORT_Length downto 0)
constant PORT_ADDRESS 4 std_logic_vector (PORT_Length downto 0)
constant PROG_4000_ADDRESS std_logic_vector (PORT_Length downto 0)
constant PORT_ADDRESS_6 std_logic_vector (PORT_Length downto 0)
constant PORT_ADDRESS_7 std_logic_vector (PORT_Length downto 0)
constant BASE_ADDRESS std_logic_vector (6 downto 0) := "1100000"
constant Data_ Length integer := 7 ;

constant Data_Length Plus_1 integer := Data_Length + 1 ;

32

"OoO"
oo™
vo10"
wo11"
v100"
w1g1"
w110"
wi1qm

thru 307

constant

constant

Transmit_Byte Length

Sync_Pattern

integer := 9 ;

std_logic_vector (Data_Length Plus_1 downto 0)

-- BIU_ID 0 is reserved and should not be used.

-- Only the lower 5 bits are part of the ID and higher 3 bits are reserved.

-- Thus, there are a total of 32 - 2 = 30 BIU/RMUs in a channel.

-- Minus 2 because ID = 0 is ignored and ID = 31 is a global id.

-~ 8/20/96

constant BIU_ID 0O std_logic_vector (Data_Length downto 0) "00000000"
constant BIU ID 1 std_logic_vector (Data_Length downto 0) "00000001"
constant BIU_ID 2 std_logic_vector (Data_Length downto 0) "00000010"
constant BIU_ID 3 std_logic_vector (Data_Length downto 0) "00000011"
constant BIU ID 4 std_logic_vector (Data_Length downto 0) "00000100"
constant BIU ID 5 std_logic_vector (Data_Length downto 0) "00000101"
constant BIU_ID 6 std_logic_vector (Data_Length downto 0) "00000110"
constant BIU ID 7 std_logic_vector (Data_Length downto 0) "00000111"
constant BIU ID 8 std_logic_vector (Data_Length downto 0) "00001000"
constant RMU_ID 1 std_logic_vector (Data_Length downto 0) "00011011"
constant RMU_ID 2 std_logic_vector (Data_Length downto 0) "0o011100"
constant RMU_ID 3 std_logic_vector (Data_Length downto 0) "00011101"
constant RMU_ID 4 std_logic_vector (Data_Length downto 0) "0o011110"
constant Global BIU_ID std_logic_vector (Data_Length downto 0) := "00011111"

constant Bit_Clock Period time := 10 ns ;
constant Delay 2 ns time := 2 ns ;
constant Delay 5 _ns time := 5 ns ;
constant Delay 7 _ns time := 7 ns ;
constant Delay_10_ns time := 10 ns ;
constant Delay_12 ns time 12 ns ;
constant Delay_15_ns time := 15 ns ;
constant Delay_20_ns time := 20 ns ;
constant Delay_25_ns time := 25 ns ;
constant Delay_30_ns time := 30 ns ;

-- File Name:

PAL22V_E.VHD

GATEWAY 486/33 (IBM AT Clone)
GATEWAY 486/33 (IBM AT Clone)

Host Machine:
Target Machine:

Environment Model Technology VHDL Simulation for Windows (Ver 4.3f)
DOS Version 6.2
Organization: NASA-LaRC
Project: Fly By Light - Power By Wire (FBL-PBW)
Author: Mahyar R. Malekpour
Creation Date: 09/21/95
Name /Number :
PAL22V (entity)
Abstract:

This file contains the entity declaration for the PC interface that will
be programmed on a PALL22V1O0.

SIGNAL DEFINITION
Acronyms/Abbreviations:
FBL/PBW

BIU - Bus Interface Unit

Dependencies:
IEEE.STD_LOGIC_1164

Global Objects:

33

"111111110"
27
28
29
30
-- 31

i

-- Exceptions:
-- Machine/Compiler Dependencies:
-- Revisions:

-- Modified on: 10/12/95
-- by: Mahyar Malekpour

-- 1. Added CLK_In signal to this entity for use by the D flip-flops.
-- 2. Added X_CLK_Out signal to separate the reset-port and program-port
-- operations. The CLK In is yied to the reset-port and thus to CLK_Out,

-- while the X CLK out is tied to program-port and is generated for the
-- Xilinx chip.

-- Modified on: 10/16/95

-- by: Mahyar Malekpour

-- 1. "CLK In" must be hooked up to pin "1" of the PAL22V10, it is the

-- c¢lock pin of all flip-flops inside the PAL.

-- 2. "CLK_Out" must be hooked up to "CLK In". It is the feedback clock
-- generated by the internal logic of the PAL and is used to latch in DO and
-- D1 sgignals.

-- 3. '"Done_ Prog_Bar" must be hooked up to "FeedBack_Done Prog". It is
-- the feedback for tri-stating the input signal. The Picdesign was wasting
-- too much of the internal logic blocks and I/0 pins beyound our

-- expectations and was requiring another PAL to do the job! By manually

-- feeding this signal back to the PAL I managged to tri-state it without
-- additional PAL and saved a lot of I/0O pins in the current PAL.

library IEEE;
use IEEE.std_logic_1164.all;

entity PAL22V is

port (
-- Inputs
CLK_In : in std_logic ;
ADDRESS : in std_logic_vector (9 downto 0) := (others => '0') ;
AEN : in std_logic ; -- Address enable, active high
IOWR_Bar : in std_logic ;
IORD_Bar : in std_logic ;
RESET : in std_logic ; -- Power on reset, active high
DO : in std_logic ;
D1 : in std_logic ;
INIT : in std_logic ;
FeedBack_Done_Prog : in std_logic ;
-- Outputs
Done_Prog_Tristate : out std_logic ;
CLK_Out : out std_logic ;
X_CLK_Out : out std_logic ;
Data_Out : out std_logic ;
Reset_Out : out std_logic ;
-- In/Outputs
Done_Prog_Bar : out std_logic) ;
end PAL22V ;
-- File Name: PAL22V_A.VHD
-- Host Machine: GATEWAY 486/33 (IBM AT Clone)
-- Target Machine: GATEWAY 486/33 (IBM AT Clone)
-- Environment : Model Technology VHDL Simulation for Windows (Ver 4.3f)
-- DOS Version 6.2
-- Organization: NASA-LaRC
-- Project: Fly By Light - Power By Wire (FBL-PBW)

34

-- Author: Mahyar R. Malekpour
-- Creation Date: 09/21/95

-- Name/Number :
-- PAL22V (architecture)

-- Abstract:
-- This file contains the architecture for the PC interface that will
-- be programmed on a PALL22V10.

-- SIGNAL DEFINITION

-- Acronyms/Abbreviations:
-~ FBL/DBW
-- BIU - Bus Interface Unit

-- Dependencies:
-- IEEE.STD_LOGIC_1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:
-- Revisions:

-- Modified on: 10/3/95
-- by: Mahyar Malekpour

-- 1. The Xilinx program-port is at address 301 Hex.
-- 2. The reset-port is at address 300 Hex.

-- 3. Renamed the Reset_ Out_Bar signal to Reset_Out for it is a user

-- programmable signal. Reset_Out signal is tied to the power on RESET

-- gignal and the D1 signal. Through D1, it can be programmed to stay high
-- or low provided the reset-port is addressed. The reset-port address is
-- 300 Hex, for now.

-- 4. Built a latch for the D1 signal so that the Reset Out signal can be
-- user programmable.

-- Modified on: 10/12/95
-- by: Mahyar Malekpour

-- 1. The latch is not implementable on the PAL via the Cadence PicDesign
-- tools. Since the PAL has D flip-flops, I have redefined the latch
-- construct as a D flip-flop for the D1 signal.

-- 2. Added CLK_In signal to the entity of this architecture.

-- By feeding back the CLK Out signal generated by the PAL to the PAL via
-- the CLK_In signal (pin 1), the CLK In signal could be used to clock

-- (latch) the D1 signal. A good test of the tools used (Cadence PicDesign
-- here) is that it should tie the CLK In signal to pin 1 of the PAL.

-- Note: The CLK_In signal assignment to pin 1 should never be altered.
-- 3. Added X_CLK_Out signal to separate the reset-port and program-port
-- operations. The CLK In is tied to the reset-port and thus to CLK_Out,
-- while the X CLK out is tied to program-port and is generated for the

-- Xilinx chip.

-- Modified on: 3/12/96
-- by: Mahyar Malekpour

-- 1. The Xilinx program-port is at NEW address 307 Hex.
-- 2. The reset-port is at NEW address 306 Hex.

library IEEE ;
use IEEE.std_logic_1164.all ;

35

architecture PAL22V_Behaviour of PAL22V is

signal
signal

PORT_1_SELECTED
PORT_2_SELECTED

std_logic ;
std_logic ;

constant PORT_1_ADDRESS std_logic_vector (9 downto 0) := "1100000110" ;
constant PORT_2_ ADDRESS std_logic_vector (9 downto 0) := "1100000111" ;
begin
Check_Addresses process (ADDRESS, AEN, IOWR_Bar, IORD Bar)
variable TEMP, TEMP2, TEMP3 std_logic := '0'
begin
TEMP2 := (not AREN) and (not IOWR_Bar) ;
if (ADDRESS = PORT_1_ADDRESS) then
TEMP := '1' ;
else
TEMP := '0' ;
end if ;

-- writing to reset-port
PORT_1_ SELECTED <= TEMP and TEMP2 ;

if (ADDRESS = PORT_2_ ADDRESS) then
TEMP := '1' ;

else
TEMP := '0' ;

end if ;

-- writing to program-port
PORT 2 SELECTED <= TEMP and TEMP2 ;

end process ;

-- Need to be able to reset the Xilinx for longer than one write cycle.

-- Therefore,
Xilinx.

Latch Process
begin
if

process (CLK_In)

(Rising_Edge (CLK_In)) then
Reset_Out <= DO ;
end if ;
end process ;

we need to latch the D1 signal that is used to reset the

CLK Out <= not (PORT 1 SELECTED) ;

X _CLK Out <= not (PORT_2 SELECTED) ;

Data_Out <= DO ;

-- not

(PORT_SELECTED and (not IOWR_Bar))

Latch_DP_process process (CLK_In)
begin
if (Rising Edge (CLK_In)) then
Done_Prog_Bar <= D1 ;
end if ;
end process ;
Tri_State_ Process process
begin
if (FeedBack_Done_Prog = 'l') then
Done_Prog_Tristate <= '0' ;
else
Done_Prog_Tristate <= 'Z' ;
end if ;

end process ;

(FeedBack_Done_ Prog)

36

i

end PAL22V_Behaviour ;

-- File Name: FIFO_E.VHD

-- Host Machine: GATEWAY 486/33 (IBM AT Clone)

-- Target Machine: GATEWAY 486/33 (IBM AT Clone)

-- Environment : Model Technology VHDL Simulation for Windows (Ver 4.3f)
-- DOS Version 6.2

-- Organization: NASA-LaRC

-- Project: Fly By Light - Power By Wire (FBL-PBW)
-- Author: Mahyar R. Malekpour

-- Creation Date: 7/22/1996

-- Name/Number :

-- FIFO (entity)

-- Abstract:

-- This file contains the entity declaration for a generic FIFO.
-- It conforms with the FIFO chip used in our board, i.e., AM???

-- SIGNAL DEFINITION

-- Full_Flag Bar -- active low, '1l' ==> not full, '0' ==> full
-- Empty Flag -- active high, '0' 'l' ==> not empty
-- HF_Flag Bar -- active low, 'l' ==> not half full, '0' ==> half full
-- Acronyms/Abbreviations:
-- Dependencies:
-- IEEE.STD_LOGIC_1164
-- Global Objects:
-- Exceptions:
-- Machine/Compiler Dependencies:
-- Revisions:
-- Modified on: ??/??/96
-- by: Mahyar Malekpour
library IEEE ;
use IEEE.std_logic_1164.all ;
entity FIFO is
generic (
Period : time := 100 ns ;
Depth : natural := 10 ; -- 2 K for now
Width : natural := 7) ; -- 8-bit Byte
port (
Data_In : in std_logic_vector (Width downto 0) ;
Data_Out : out std_logic_vector (Width downto 0) := "ZZZZZZZZ" ;
Reset_Bar : in std_logic ; -- := '1' ;
Read_Bar : in std_logic ; -- := '1' ;
Write_Bar : in std_logic ; -- := '1' ;
Full Flag Bar : out std_logic ; -- active low
Empty_ Flag : out std_logic ; -- active high
HF Flag_ Bar : out std_logic -- active low
)
end FIFO ;
-- File Name: FIFO_A.VHD

37

-- Host Machine: GATEWAY 486/33 (IBM AT Clone)
-- Target Machine: GATEWAY 486/33 (IBM AT Clone)

-- Environment : Model Technology VHDL Simulation for Windows (Ver 4.3f)
-- DOS Version 6.2

-- Organization: NASA-LaRC

-- Project: Fly By Light - Power By Wire (FBL-PBW)

-- Author: Mahyar R. Malekpour

-- Creation Date: 7/22/1996

-- Name/Number :

-- FIFO (entity)

-- Abstract:

-- This file contains the entity declaration for a generic FIFO.
-- It conforms with the FIFO chip used in our board, i.e., AM???

-- SIGNAL DEFINITION

-- Full_Flag Bar -- active low, '1l' ==> not full, '0' ==> full
-- Empty Flag -- active high, '0' ==»> empty, 'l' ==> not empty
-- HF_Flag Bar -- active low, 'l' ==> not half full, '0' ==> half full
-- Acronyms/Abbreviations:
-- Dependencies:
-- IEEE.STD_LOGIC_1164
-- Global Objects:
-- Exceptions:
-- Machine/Compiler Dependencies:
-- Revisions:
-- Modified on: 8/9/96
-- by: Mahyar Malekpour
-- Fine tuned a bit more today.
library IEEE ;
use IEEE.std_logic_1164.all ;
use ieee.std_logic_arith.all ;
use work.my std logic_arith.all ;
architecture FIFO_Behave of FIFO is
type Memory is array (0 to Depth - 1) of integer ;
signal FIFO Memory : Memory ;
begin
process (Read_Bar, Write Bar, Reset_BRar)
variable Delay : time := Period / 3 ;
variable Count : natural range 0 to Depth := 0 ;
variable Read_Ptr : natural range 0 to Depth := 0 ;
variable Write Ptr : natural range 0 to Depth := 0 ;
variable TEMP : integer := 0 ;
begin
if (Read _Bar = 'l') and (Write Bar = 'l') and (Reset_Bar = '0') then
Write Ptr := 0 ;
Read_ Ptr 0 ;
Count = 0
Full_Flag Bar <= 'l' after Delay ;
Empty Flag <= '0' after Delay ;
HF Flag Bar <= 'l' after Delay ;
Data_OQut <= "ZZZZZZZZ" ; -- a must here

38

elsif (Reset_Bar = 'l') then

if (Falling Edge (Write Bar) and (Count < Depth)) then
Count := Count + 1 ;
TEMP := To_Integer (Data_In) ;
FIFO_Memory (Write_ Ptr) <= TEMP ;
Write Ptr := (Write_Ptr + 1) mod Depth ;

end if ;

if (Falling_Edge (Read Bar) and (Count > 0)) then
TEMP := FIFO Memory (Read Ptr) ;

Data_Out <= To_StdLogicVector (TEMP, 8) after 10 ns ;

Count := Count - 1 ;

Read_Ptr := (Read Ptr + 1) mod Depth ;
elsif Rising Edge (Read_Bar) then

Data OQut <= "ZZZZZZZZ" after 10 ns ; -- a must
end if ;

if (Count = 0) then

Empty Flag <= '0' after Delay ;
else

Empty Flag <= 'l' after Delay ;
end if ;

if (Count »>= Depth) then
Full_Flag_Bar <= '0' after Delay ;
else
Full_Flag_Bar <= 'l' after Delay ;
end if ;

if (Count »= Depth / 2) then
HF_Flag Bar <= '0' after Delay ;
else
HF_Flag Bar <= 'l' after Delay ;
end if ;

end if ;

end process ;

File Name: XC3020_E.VHD
Host Machine: GATEWAY 486/33 (IBM AT Clone)
Target Machine: GATEWAY 486/33 (IBM AT Clone)
Environment : Model Technology VHDL Simulation for Windows (Ver 4.3f)
DOS Version 6.2
Organization: NASA-LaRC
Project: Fly By Light - Power By Wire (FBL-PBW)
Author: Mahyar R. Malekpour
Creation Date: 3/19/96
Name /Number :
XC3020 (entity)
Abstract:

This file contains the entity declaration for the PC interface and part
of the BIU that will be programmed on a Xilinx XC3020.

SIGNAL DEFINITION
Acronyms/Abbreviations:
FBL/PBW

BIU - Bus Interface Unit

Dependencies:
IEEE.STD_LOGIC_1164

39

Global Objects:

Exceptions:

Machine/Compiler Dependencies:
Revisions:

Modified on: 3/25/1996
by: Mahyar Malekpour
Added Chip Select_Bar signal to the entity. It is needed in the XC4000.
Modified on: 4/9/1996
by: Mahyar Malekpour
Added CCLK_4000, Din_4000, Prog_4000, INIT 4000, and DONE_4000 signals
to the entity. They are used for programming of the XC4000 in both the
slave serial mode and parallel periferal mode.

Modified on: 6/7/1996

by: Mahyar Malekpour
Added Direction signal to the entity to control flow of data thru 74LS245
bidirectional buffer that connects uP_Data bus to the XC3020. The dehault
value of Direction signal is high, i.e., uP is writing, otherwise low only
when uP is reading from ports within the xc3020.

library IEEE ;

use IEEE.std_logic_1164.all ;

use WORK.CNSTNT_P.all ;

entity XC3020 is

port (
-- the following 4 signals are not synthesizable and so are commented out.
-- 3/19/96
RESET : in std_logic ; -- Power on reset, active
CLK_In : in std_logic ;
Serial_Prog_In : in std_logic ;
Done_Prog_Bar : in std_logic ;
Reset_BIU out std_logic ;
Direction out std_logic ;
Data_Read_Bar out std_logic ;
Data_Write_ Bar out std_logic ;

-- This signal is added because it is needed in the XC4000
-- Mahyar 3/25/1996

high

Chip_ Select_Bar out std_logic ;

ADDRESS : in std_logic_vector (9 downto 0) ;

AEN_Bar : in std_logic ; -- Address enable, active high
IOWR_Bar : in std_logic ;

IORD_Bar : in std_logic ;

uP_Data_In Out inout std_logic_vector (Data_Length downto 0) ;
FIFO Data_In_Out inout std_logic_vector (Data_Length downto 0) ;
Input_FIFO_Reset Bar out std_logic ;

Input_FIFO_Read_ Bar out std_logic ;

Input FIFO Write Bar : out std_logic ;

Input FIFO_Full Bar : in std_logic ;

Input_ FIFO _Empty Bar : in std_logic ;

Input_ FIFO_HF_Bar : in std_logic ;

Output_FIFO Reset Bar out std_logic ;

Output_ FIFO Read Bar out std_logic ;

Output_FIFO Write Bar : out std_logic ;

Output_FIFO _Full Bar : in std_logic ;

Output_FIFO Empty Bar : in std_logic ;

Output_FIFO_HF Bar : in std_logic ;

BIU FIFO_Read_ Bar : in std_logic ;

BIU FIFO Write_Bar : in std_logic ;

CCLK_4000 out std_logic ;

Prog_ 4000 out std_logic ;

40

INIT_4000 : in std_logic ;

DONE_4000 : in std_logic

)
end XC3020 ;
-- File Name: XC3020_A.VHD
-- Host Machine: GATEWAY 486/33 (IBM AT Clone)
-- Target Machine: GATEWAY 486/33 (IBM AT Clone)
-- Environment : Model Technology VHDL Simulation for Windows (Ver 4.3f)
-- DOS Version 6.2
-- Organization: NASA-LaRC
-- Project: Fly By Light - Power By Wire (FBL-PBW)
-- Author: Mahyar R. Malekpour
-- Creation Date: 3/19/96
-- Name/Number :
-- XC3020 (architecture)
-- Abstract:

-- This file contains the architecture for the PC interface and part
-- of the BIU that will be programmed on a Xilinx XC3020.

-- SIGNAL DEFINITION

-- Acronyms/Abbreviations:
-~ FBL/DBW
-- BIU - Bus Interface Unit

-- Dependencies:
-- IEEE.STD_LOGIC_1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

-- Modified on: 4/9/1996

-- by: Mahyar Malekpour

-- Modified the entities to reflect the newly added XC4000 related signals.
-- Modified on: 6/7/1996

-- by: Mahyar Malekpour

-- Modified the entities to reflect the newly added Direction signal.

library IEEE ;
use IEEE.std_logic_1164.all ;
use WORK.CNSTNT_P.all ;

architecture XC3020_Behave of XC3020 is

component INTRFC

port (

Reset_BIU : out std_logic ;

Direction : out std_logic ;

Data_Read_Bar : out std_logic ;

Data_Write_ Bar : out std_logic ;

Chip_ Select_Bar : in std_logic ; -- chip select, active low
ADDRESS : in std_logic_vector (PORT_Length downto 0) ;
IOWR_Bar : in std_logic ;

IORD_Bar : in std_logic ;

uP_Data_In Out : inout std_logic_vector (Data_Length downto 0) ;

41

FIFO_Data In_ Out

Input_FIFO_Reset
Input_FIFO_Read B
Input FIFO Write |
Input_FIFO_Full B
Input_FIFO_Empty |
Input_FIFO_HF Bar

Output_ FIFO Reset
Output_FIFO Read |
Output_FIFO Write
Output_FIFO Full |
Output_FIFO_Empty
Output_FIFO_HF Ba

BIU_FIFO_Read_Bar
BIU_FIFO Write Ba

CCLK_4000
Prog_4000
INIT_4000
DONE_4000

)

end component ;

component uP_PRT
port (
ADDRESS
AEN_Bar

inout std_logic_vector (Data_Length downto 0) ;

Bar : out std_logic ;
ar : out std_logic ;
Bar : out std_logic ;
ar : in std_logic ;
Bar : in std_logic ;

in std_logic ;

_Bar : out std_logic ;

Bar : out std_logic ;
_Bar : out std_logic ;
Bar : in std_logic ;
 Bar : in std_logic ;
r : in std_logic ;

in std_logic ;
r : in std_logic ;

out std_logic ;
out std_logic ;

in std_logic ;

in std_logic

in std_logic_vector (9 downto 0) ;

in std_logic ; -- Address enable, active high
out std_logic -- c¢hip select, active low

Chip_ Select_Bar

)

end component ;

for all : INTRFC use ent
for all : uP_PRT use ent

ity work.INTRFC (INTRFC_Behaviour) ;
ity work.uP_PRT (uP_PRT_Behave) ;

-- for INTRFC

-- for uP_PRT
signal Chip_ Select : std

_logic ;

U0 : INTRFC port map (

Ul : uP_PRT port map (

-- Send it out to the XC

Reset BIU, Direction, Data_Read Bar,
Data_Write_ Bar, Chip_ Select,
ADDRESS (PORT_Length downto 0),

IOWR_Bar, IORD_Bar, uP_Data_In Out,

FIFO _Data_In_Out,

Input_FIFO_Reset Bar, Input_ FIFO Read Bar,
Input_ FIFO Write Bar,
Input_FIFO_Full Bar, Input_ FIFO_Empty Bar,
Input_FIFO_HF Bar,
Output_ FIFO Reset Bar, Output FIFO Read Bar,
Output_FIFO Write Bar,
Output_ FIFO Full Bar, Output FIFO_Empty Bar,
Output_ FIFO_HF_ Bar,
BIU FIFO_Read Bar, BIU FIFO Write_ Bar,
CCLK_4000, Prog_ 4000, INIT_4000, DONE_ 4000)

ADDRESS, AEN_Bar, Chip Select) ;

4000 as well

Chip Select_Bar <= Chip Select ;

end XC3020_Behave ;

i

42

File Name:
Host Machine:
Target Machine:

INTRFC_E.VHD
GATEWAY 486/33
GATEWAY 486/33

(IBM AT Clone)
(IBM AT Clone)

Environment Model Technology VHDL Simulation for Windows (Ver 4.3f)
DOS Version 6.2
Organization: NASA-LaRC
Project: Fly By Light - Power By Wire (FBL-PBW)
Author: Mahyar R. Malekpour
Creation Date: 10/24/95
-- Name/Number :
-- INTRFC (entity)
-- Abstract:

-- This file contains the entity declaration for the PC interface that will
-- be programmed on a Xilinx XC3000.

-- SIGNAL DEFINITION

-- Acronyms/Abbreviations:

-- FBL/PBW
-~ BIU -

Bus Interface Unit

-- Dependencies:
-- IEEE.STD_LOGIC_1164

-- Global Obj

ects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

-- Modified on:

-- by:

-- 1.

10/24/95

Mahyar Malekpour

A head count of the I/0O pins

-- 41 I/0 pins needed:

-- 18 for two FIFOs,

-- (AEN,

IOWR,

and IORD),

8 data lines,

-- XC300 provides us with 54 I/0 pins,

-- Therefore,
-- will not!

our PC interface should fit inside one XC3000,
The BIU will require,

at least,

(as of now) :

-- interface in addition to its other I/0 pins.

-- Modified on:

-- by:
-- 1.

-- Modified on:

-- by:

-- Modified on:

- by

3/12/96

Mahyar Malekpour
Bring in the half-full flags of the FIFOs.

3/19/96

Mahyar Malekpour

6/7/1996

Mahyar Malekpour

10 address lines,
and 2 from the two FIFOs.

3 control lines

but the BIU

-- Modified the entities to reflect the newly added Direction signal.

18 I/0 pins for the two FIFOs

Two more I/0 pins used.

library IEEE

use IEEE.std_logic_1164.all ;

i

use WORK.CNSTNT_P.all ;

entity INTRFC is

port (

-- the following 4 signals are not synthesizable and

-~ 3/19/96

RESET

CLK_In
Serial_Prog_In
Done_Prog_Bar

Reset_BIU
Direction

in std_logic
in std_logic
in std_logic
in std_logic
out std_logic ;
out std_logic ;

43

so are commented out.

Power on reset,

active high

)

end INTRFC

Data_ Read Bar
Data_Write_ Bar

Chip_ Select_Bar

ADDRESS
IOWR_Bar
ICRD Bar

uP_Data_In_ Out
FIFO_Data In_ Out

Input_FIFO_Reset Bar
Input_FIFO_Read_ Bar
Input FIFO Write Bar
Input_FIFO_Full Bar
Input_FIFO_Empty Bar
Input_FIFO_HF Bar

Output_ FIFO_Reset_ Bar
Output_ FIFO Read Bar
Output_FIFO Write Bar
Output_ FIFO Full Bar
Output_ FIFO_Empty Bar
Output_FIFO_HF Bar

BIU_FIFO_Read_Bar
BIU FIFO Write_Bar

CCLK_4000
Prog_4000

INIT_4000
DONE_4000

i

i

out
out

in

in
in
in

inout
inout

out
out
out
in
in
in

out
out
out
in
in
in

in
in

out
out
in
in

std_logic ;
std_logic ;
std_logic ; -- chip select, active low
std_logic_vector (PORT_Length downto 0) ;
std_logic ;

std_logic ;

std_logic_vector (Data_Length downto 0) ;
std_logic_vector (Data_Length downto 0) ;

std_logic ;
std_logic ;
std_logic ;
std_logic ;
std_logic ;
std_logic ;

std_logic ;
std_logic ;
std_logic ;
std_logic ;
std_logic ;
std_logic ;

std_logic ;
std_logic ;

std_logic ;
std_logic ;
std_logic ;
std_logic

File Name:

INTRFC _A.VHD

Host Machine:
Target Machine:
Environment

Organization:
Project:
Author:
Creation Date:

Name /Number :
INTRFC

Abstract:

GATEWAY 486/33 (IBM AT Clone)
(IBM AT Clone)
Model Technology VHDL Simulation for Windows (Ver 4.3f)

GATEWAY 486/33

DOS Version 6.2
NASA-LaRC

Fly By Light - Power By Wire

Mahyar R. Malekpour

10/24/95

(FBL-PBW)

(architecture)

This file contains the architecture for the PC interface that will
be programmed on a Xilinx XC3000.

SIGNAL DEFINITION

Acronyms/Abbreviations:

FBL/DPBW
BIU -

Dependencies:

Bus Interface Unit

IEEE.STD_LOGIC_1164
WORK.CNSTNT_P.all

Global Objects:

Exceptions:

Machine/Compiler Dependencies:

Revisions:

44

Modified on: 11/22/95
by: Mahyar Malekpour

Declared a constant, Xilinx Delay, to reflect and study the effect of
inherent propagation delay in the Xilinx 3000. The preliminary resuts
indicate that we may have some timing problem while fetching, i.e.
reading, data from the Output_ FIFO.

Xilinx Delay = 30 ===> it works

Xilinx Delay = 40 ===> it doesn't work
Need to study this futher.

Modified on: 11/27/95
by: Mahyar Malekpour

Modified the code to overcome the timing problems associated with the
propagation delay imposed by the Xilinx FPGA. While reading data from
the FIFO, the bidirectional bus is now controlled directly by the
IORD_Bar signal. With this arrangement, the data bus will not be driven
by the FIFOs when the bus is to be tri-stated. The time period where the
IORD_Bar is active, when low, has to be long enogh to account for the
Xilinx delay as well as FIFO response time. This time is about >= 70 ns.

Modified on: 11/30/95
by: Mahyar Malekpour

Modified the BIU Read Write FIFO process to emulate activities of the
BIUs. See notes by the BIU Read Write FIFO process.

Modified on: 3/12/96
by: Mahyar Malekpour

Modified on: 3/28/96
by: Mahyar Malekpour

Added 4 new signals to this module:

Reset_BIU, uP_Data Pin 5, uP_Data_Pin 6, uP_Data_Pin_7
These signal are send out for posgssible future use in other parts of the
BIU. With this addition, all bits of the uP data bus are used when the
uP addresses the "reset" port. Thus, the uP can, thru software,
gselectively and/or collectively reset parts or all of the system.

uP_Data_In Out (0) : reset input FIFO

uP_Data_In Out (1) : reset output FIFO

uP_Data_In Out (2) : input FIFO write and output FIFO read
uP_Data_In Out (3) : output FIFO write and input FIFO read
uP_Data_In Out (4) : reset BIU, i.e., global reset
uP_Data_In Out (5) : Not used

uP_Data_In Out (6) : Not used

uP_Data_In Out (7) : Not used

Modified on: 4/1/96
by: Mahyar Malekpour

Latched the reset commands written to the Command ADDRESS from the uP
data bus into an internal register, Latched_Command, for futher use.

Modified on: 4/16/96

by: Mahyar Malekpour

The bit 4 of the latched command is used as a global reset to the BIU,
and hence is named Reset_ BIU. When high, the BIU and the FIFOs are reset.
Since it is latched, it must be lowered after some time interval for the
normal operations to resume.

Modified on: 4/19/96
by: Mahyar Malekpour

Simplified the code and got rid of the previous modifications.

Modified on: 5/2/96

by: Mahyar Malekpour
Added the last segment to the bus so data can be written to and read from
the XC4000 via the same bus that is used to access the two FIFOs. Thus,

this bus, FIFO Data_ In Out bus, is being driven from five directions and
thru three ports. This bus is also used to program the XC4000 via the
XC3020 in the parallel sgsynchronous prepheral mode.

45

-- a. Data port:

-- 1. read FIFO_Out

-- 2. write FIFO_In

-- b. PROG_4000 port

-- 3. program XC4000

-- c. 4000_Status port

-- 4. read BIU status

-- 5. write schedule to RAM

-- Modified on: 6/7/1996
-- by: Mahyar Malekpour
-- Modified the entities to reflect the newly added Direction signal.

-- Modified on: 8/27/96
-- by: Mahyar Malekpour

-- Once again there is a need to individually reset the FIFOs and
-- independely from the BIU. Therefore, using the same old "reset" port
-- the FIFOs and the BIU can now be reset thru the following data bits:

-- uP_Data_In Out (0) : reset input FIFO
-- uP_Data_In Out (1) : reset output FIFO
-- uP_Data_In Out (2) : Not used

-- uP_Data_In Out (3) : Not used

-- uP_Data_In Out (4) : reset BIU

-- uP_Data_In Out (5) : Not used

-- uP_Data_In Out (6) : Not used

-- uP_Data_In Out (7) : Not used

-- Thus, there is no such thing as global reset anymore.
-- Note: I have also inverted the Reset_ BIU input, i.e., data bit 4, to

-- be consistent with the FIFO reset input bits. MUST reflect this change
-- in the C/C++ code of the test-bench.

library IEEE ;
use IEEE.std_logic_1164.all ;
use WORK.CNSTNT_P.all ;

architecture INTRFC Behaviour of INTRFC is

signal Latched_Command : std_logic_vector (Data_Length downto 0) ;

signal Data_SELECTED_Bar : std_logic ;
signal FIFO_Read : std_logic ;
signal Status_SELECTED_Bar : std_logic ;
signal Status_Read : std_logic ;

signal Command_SELECTED_Bar : std_logic ;
signal PROG_4000_SELECTED Bar : std_logic ;
signal PROG_4000_Read : std_logic ;

begin

-- This process decifers the incomming address bits and activates one of
-- the selected ports used in this module.

Check_Addresses : process (Chip Select_Bar, ADDRESS)
begin

Command_ SELECTED Bar <= '1' ;

Data_SELECTED Bar <= 'l' ;

Status_SELECTED_Bar <= 'l1' ;
PROG_4000_SELECTED_ Bar <= '1' ;

46

if (ADDRESS = Data_ ADDRESS) and (Chip_Select Bar = '0') then
-- Writing data to the FIFO_In and reading data from the FIFO_Out
Data_SELECTED Bar <= '0' ;

elsif (ADDRESS = Status_ADDRESS) and (Chip Select_Bar = '0') then
-- reading the FIFO-staus-register contents
Status_SELECTED_Bar <= '0' ;

elsif (ADDRESS = Command_ ADDRESS) and (Chip Select_Bar = '0') then
-- Resetting the BIU and the FIFOs
Command_ SELECTED_ Bar <= '0' ;

elsif (ADDRESS = PROG_4000_ADDRESS) and (Chip_Select_Bar = '0') then
-- reseting and programming the XC4000 and reading XC4000 status
-- from the INIT and DONE signals. All thru the same port.
PROG_4000_SELECTED Bar <= 'O' ;

end if ;
end process ;

-- Defining a bi-deirectional buffer for the data bus

-- The next two processes work together to define the bi-deirectional bus

uP_Read_ FIFO_Status : process (FIFO_Read, Status_Read, PROG_4000_Read,
FIFO Data_In Out, INIT 4000, DONE_4000,
Input_FIFO_Full Bar, Input FIFO_Empty Bar, Input FIFO HF Bar,
Output_FIFO Full Bar, Output_ FIFO Empty Bar, Output_ FIFO_HF Bar)

begin
if (FIFO_Read = '0') then
uP_Data_In Out <= FIFO_Data_In Out ;
elsif (Status_Read = '0') then

uP_Data_In Out (0) <= Input_ FIFO_Full Bar ;
uP_Data_In Out (1) <= Input_ FIFO_Empty Bar ;
uP_Data_In Out (2) <= Input_ FIFO_HF_Bar ;
uP_Data_In Out (3) <= Output_FIFO_Full Bar ;
uP_Data_In Out (4) <= Output_FIFO_Empty_ Bar ;
uP_Data_In Out (5) <= Output_FIFO_HF_Bar ;
uP_Data_In Out (6) <= '0' ;
uP_Data_In Out (7) <= '0' ;

elsif (PROG_4000_Read = '0') then
uP_Data_In Out (0) <= INIT_ 4000 ;
uP_Data_In Out (1) <= DONE_4000 ;
uP_Data_In Out (2) <= '0' ;
uP_Data_In Out (3) <= '0' ;
uP_Data_In Out (4) <= '0' ;
uP_Data_In Out (5) <= '0' ;
uP_Data_In Out (6) <= '0' ;
uP_Data_In Out (7) <= '0' ;
else
uP_Data_In Out <= "ZZZZZZZZ" ;

end if ;

end process ;

uP_Write FIFO : process (Data SELECTED_Bar, uP_Data_ In Out,
PROG_4000_SELECTED Bar)

begin
if ((Data_SELECTED Bar = '0O') or (PROG_4000_SELECTED Bar = '0O')) then
FIFO Data In Out <= uP_Data_In Out ;
else
FIFO_Data_In_Out <= "ZZZZZZZZ" ;
end if ;

end process ;

Latch_Command : process (Command_ SELECTED_Bar, uP_Data_ In_ Out, IOWR_Bar)

begin
if (Command_ SELECTED Bar = '0') and (IOWR Bar = '0') then -- Latch in the uP data bus.
Latched Command <= uP_Data In_OQut ;
end if ;

end process ;

-- Time to reset the BIU

47

Reset BIU <= not Latched Command (4) ;

-- The buffer should transfer data to the uP data bus whenever uP attempts
-- to read any port in the XC3020 and xc4000.
-- 6/7/1996 Mahyar Malekpour

Direction <= IORD_Bar or Chip Select_Bar ;

-- Time to reset the FIFOs

-~ 8/27/96

Input FIFO_Reset_Bar <= Latched Command (0) ;
Output_FIFO Reset_ Bar <= Latched Command (1) ;

-- Send the rest of the data bus out for future use in other
-- parts of the BIU.

-- Mahyar 3/28/1996

Prog 4000 <= Latched_Command (5) ;

Data_Read_Bar <= Latched Command (6) ;

Data_Write_ Bar <= Latched Command (7) ;

-- Time to read or write to the FIFOs
FIFO_Read <= IORD_Bar or Data_SELECTED_ Bar ;

-- Time to read the FIFOs status
Status_Read <= IORD_Bar or Status_SELECTED_Bar ;

-- Time to grogram the XC4000
PROG 4000 _Read <= IORD Bar or PROG 4000 SELECTED Bar ;
CCLK_4000 <= IOWR_Bar or PROG_4000_ SELECTED Bar ;

-- This process processes all selected commands for reading and writing

-- to the I/0 ports. It also initializes the signals at the power on.

Command_Process : process (Data_ SELECTED Bar, Latched Command,
IORD_Bar, IOWR_Bar, Status SELECTED_Bar,
PROG_4000_SELECTED Bar)

begin
-- Time to reset the system
if (Latched_Command (4) = '0') then -- i.e. if Reset BIU is low
-- 8/27/96
if (Latched_Command (0) = '0') then -- i.e. if reset input FIFO

-- The following 2 signals need to be high during the reset process
-- therefore, they can be tied and controled by a single data line.
Input FIFO_Write Bar <= '1' ;

elsif (Latched Command (1) = '0') then -- i.e. if reset output FIFO
Output_FIFO Read Bar <= 'l1' ;

else
Input_ FIFO_Write_ Bar <= IOWR_Bar or Data_ SELECTED Bar ;
Output FIFO Read Bar <= IORD Bar or Data SELECTED_Bar ;

end if ;
end process ;

BIU Read Write FIFO : process (Latched_ Command,
BIU FIFO Write_ Bar, BIU FIFO_Read_BRar)

begin
if (Latched_Command (4) = '0') then -- i.e. if Reset BIU is low
-- 8/27/96
if (Latched_Command (0) = '0') then -- i.e. if reset input FIFO

-- The following 2 signals need to be high during the reset process
-- therefore, they can be tied and controled by a single data line.
Input_FIFO_Read Bar <= '1' ;

elsif (Latched Command (1) = '0') then -- i.e. if reset output FIFO
Output_FIFO Write Bar <= '1l' ;

else

-- BIU is reading from the Input_FIFO
Input_FIFO_Read Bar <= BIU_FIFO_Read Bar ;

48

-- BIU is writing to the Output_ FIFO
Output_FIFO Write Bar <= BIU_FIFO_Write_ Bar ;

end if ;
end process ;

-- File Name: uP_PRT_E.VHD

-- Host Machine: GATEWAY 486/33 (IBM AT Clone)

-- Target Machine: GATEWAY 486/33 (IBM AT Clone)

-- Environment : Model Technology VHDL Simulation for Windows (Ver 4.3f)
-- DOS Version 6.2

-- Organization: NASA-LaRC

-- Project: Fly By Light - Power By Wire (FBL-PBW)
-- Author: Mahyar R. Malekpour

-- Creation Date: 3/19/96

-- Name/Number :

-- uP_PRT (entity)

-- Abstract:

-- This file contains the entity declaration for the interface part of

-- the PC. It simply decodes the address, using only the upper bits, and
-- generats a chip select signal to activate the BIU and uP interactions.
-- This entity is to be programmed on a Xilinx XC3020.

-- SIGNAL DEFINITION
-- Acronyms/Abbreviations:
-~ FBL/DBW

-- BIU - Bus Interface Unit

-- Dependencies:
-- IEEE.STD_LOGIC_1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:
-- Revisions:

-- Modified on: ??/?7?/1996
-- by: Mahyar Malekpour

library IEEE ;
use IEEE.std_logic_1164.all ;
use WORK.CNSTNT_P.all ;

entity uP_PRT is

port (
ADDRESS : in std_logic_vector (9 downto 0) ;
AEN_Bar : in std_logic ; -- Address enable, active high
Chip_Select_Bar : out std_logic -- chip select, active low
)

end uP_PRT ;

-- File Name: uP_PRT_A.VHD

-- Host Machine: GATEWAY 486/33 (IBM AT Clone)

49

-- Target Machine: GATEWAY 486/33 (IBM AT Clone)

-- Environment : Model Technology VHDL Simulation for Windows (Ver 4.3f)
-- DOS Version 6.2

-- Organization: NASA-LaRC

-- Project: Fly By Light - Power By Wire (FBL-PBW)

-- Author: Mahyar R. Malekpour

-- Creation Date: 3/19/96

-- Name/Number :

-- uP_PRT (architeture)

-- Abstract:

-- This file contains the entity declaration for the interface part of

-- the PC. It simply decodes the address, using only the upper bits, and
-- generats a chip select signal to activate the BIU and uP interactions.
-- This entity is to be programmed on a Xilinx XC3020.

-- SIGNAL DEFINITION

-- Acronyms/Abbreviations:

-~ FBL/DBW

-- BIU - Bus Interface Unit

-- Dependencies:
-- IEEE.STD_LOGIC_1164

-- CNSTNT_P
-- Global Objects:
-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:
-- Modified on: ??/??/7?7?
-- by: Mahyar Malekpour

library IEEE ;
use IEEE.std_logic_1164.all ;
use WORK.CNSTNT_P.all ;

architecture uP_PRT Behave of uP_PRT is
begin

Check_Addresses : process (ADDRESS, AEN Bar)
begin
if (ADDRESS (9 downto (PORT_Length + 1)) = BASE_ADDRESS) then
Chip_Select_ Bar <= AEN_ Bar ;
else
Chip_Select Bar <= 'l' ;
end if ;

end process ;

-- File Name: XC4005_E.VHD

-- Host Machine: GATEWAY 486/33 (IBM AT Clone)

-- Target Machine: GATEWAY 486/33 (IBM AT Clone)

-- Environment : Model Technology VHDL Simulation for Windows (Ver 4.3f)
-- DOS Version 6.2

-- Organization: NASA-LaRC

-- Project: Fly By Light - Power By Wire (FBL-PBW)

-- Author: Mahyar R. Malekpour

-- Creation Date: 6/10/1996 based on xc4000 created on 03/22/96

50

-- Name/Number :
XC4005

(entity)
-- Abstract:

architecture BIU.

SIGNAL DEFINITION

-- BIU_ID BIU ID

-- S_In Serial data into BIU

-- S_Out Serial data out of BIU

-- Reset BIU agserted by peripheral microprocessor to reset

This signal
Xilinx 4000 require high for "clr".

FIFO Data_In 8-bit data from FIFO_In into BIU

-- FIFO_Read_ Bar triggers reading from the input FIFO, FIFO_ In,
-- FIFO_Data_Out 8-bit data out of BIU to FIFO_Out
-- FIFO Write Bar triggers writing to the output FIFO, FIFO Out,

Chip_ Select_Bar
uProcessor access.
reset line to BIU from uProcessor,
data lines from EPROM
active low, read line to EPROM.
address lines to EPROM
Input clock to the BIU =
Output clock of the BIU =

BIU Reset
ROM_Data
ROM_Read_bar
ROM_ADDRESS
Clock In
Clock Out

active low

Bit clock
Byte clock

Acronyms/Abbreviations:
FBL/PBW
BIU - Bus Interface Unit

Dependencies:
IEEE.STD_LOGIC_1164

Global Objects:

Exceptions:

Machine/Compiler Dependencies:
Revisions:

Modified on:
by:

3/27/96
Mahyar Malekpour

Added "Reset_ BIU"
known initial state.
in Xilinx 4000 require high for "clr".

Modified on:
-- b

4/12/96
Mahyar Malekpour

on demand. Again,
It will have to be modified later.

Modified on: 5/6/96

-- by: Mahyar Malekpour

Added the last segment of the FIFO Bus,
XC4000 to XC3020 and thus to the uP.
to and from the XC4000 status registers as well as the adjoining RAM
that holds the schedule of events. This segment of the bus MUST be
tri-stated when not in use as other segments are. Two new signals,
Data_Read_Bar and Data_Write_ Bar, were also added for the correspong
operation to be controlled by the ubP.

FIFO Data_In_Out,

Modified on: 8/22/96
-- by: Mahyar Malekpour
Added Switch_Time_ In and INTRPT_Out to this entity.

INTRPT_Out is used to let the uP know a new cycle started.
Modified on: 8/27/96

-- by: Mahyar Malekpour
Added INTRPT_ACK_In to this entity.

51

This file contains the entity declaration for the FBL/PBW fault-tolerant

BIU, active high

is active high because the Flip-Flops in

active low

active low

active low, used by uProcessor to select BIU for

signal to clear the 4-bit counter and reset it in a
This signal is active high because the Flip-Flops

y:
Added three address lines so that I can transfer data between the FIFOs
this is for intermediate step and for test purposes.

that connects
It allows read and write of data

Sw1tch_T1me_In is provided to give the user more control over the switch time.

-- INTRPT_ACK In is used to let the BIU know that the uP has serviced the

-- interrupt.

-- Modified on: 9/4/96
-- by: Mahyar Malekpour
-- Added MUX_Select to this entity.

library IEEE ;

use IEEE.std_logic_1164.all ;
use WORK.CNSTNT_P.all ;

use WORK.EPROM P.all ;

entity XC4005 is

PORT (
BIU OR_RMU in std_logic ;
BIU ID in std_logic_vector (Data_Length downto 0) ;
-- S_In in std_logic ;
-- S_Out out std_logic ;
Reset_BIU in std_logic ;
Chip_ Select_Bar in std_logic ;
FIFO Data_In in std_logic_vector (Data_Length downto 0) ;
Input_FIFO_Read_ Bar out std_logic ;
Input FIFO_Full Bar in std_logic ;
Input_ FIFO Empty Bar in std_logic ;
Input_ FIFO_HF_Bar in std_logic ;
FIFO Data_Out out std_logic_vector (Data_Length downto 0) ;
Output_FIFO Write Bar out std_logic ;
Output_FIFO_Full Bar in std_logic ;
Output_FIFO _Empty Bar in std_logic ;
Output_FIFO_HF Bar in std_logic ;
FIFO Data_In_Out inout std_logic_vector (Data_Length downto 0) ;
Data_Read_Bar in std_logic ;
Data_Write_ Bar in std_logic ;
Bit_Clock_In in std_logic ;
Byte Clock_Out out std_logic ;
ADDRESS in std_logic_vector (PORT_Length downto 0) ;
IOWR_Bar in std_logic ;
IORD_Bar in std_logic ;
Serial_Data_In in std_logic ;
Serial_Data_Out out std_logic ;
-- the folowing signals are for test purposes only
-- get rid of them later
Latched Sync_Out : out std_logic ;
ROM_Data in std_logic_vector (ROM_WIDTH - 1 downto 0) ;
ROM_Read_Bar out std _Logic ; -- := '0' ; -- active low
ROM_Write Bar out std _Logic ; -- := '0' ; -- active low
ROM_ADDRESS out std_logic_vector (ROM_ADDRESS LINES - 1 downto 0) ;
Switch_Time In in std_logic_vector (2 downto 0) ; -- three bits for now
INTRPT_Out out std_logic ;
INTRPT_ACK In in std_logic ;
MUX_Select out std_logic_vector (Data_Length downto 0)
)
end XC4005 ;
-- File Name: XC4005_A.VHD
-- Host Machine: GATEWAY 486/33 (IBM AT Clone)

-- Target Machine: GATEWAY 486/33

(IBM AT Clone)

52

-- Environment : Model Technology VHDL Simulation for Windows (Ver 4.3f)
-- DOS Version 6.2

-- Organization: NASA-LaRC

-- Project: Fly By Light - Power By Wire (FBL-PBW)

-- Author: Mahyar R. Malekpour

-- Creation Date: 6/10/1996 based on xc4000 created on 03/22/96
-- Name/Number :

-- XC4005 (architecture)

-- Abstract:

-- This file contains the architecture for the FBL/PBW fault-tolerant
-- architecture BIU.

-- SIGNAL DEFINITION

-- BIU_ID : BIU ID

-- S_In : Serial data into BIU

-- S_Out : Serial data out of BIU

-- FIFO Data_In : 8-bit data from FIFO _In into BIU

-- FIFO_Read_ Bar : triggers reading from the input FIFO, FIFO_In, active low
-- FIFO_Data_Out : 8-bit data out of BIU to FIFO_Out

-- FIFO Write Bar : triggers writing to the output FIFO, FIFO_Out, active low
-- Chip_ Select_Bar : active low, used by uProcessor to select BIU for uProcessor access.
-- BIU Reset : reset line to BIU from uProcessor, active ?

-- ROM_Data : data lines from EPROM

-- ROM_Read_bar : active low, read line to EPROM.

-- ROM_ADDRESS : address lines to EPROM

-- Bit_Clock_In : Input clock to the BIU = Bit clock

-- Byte Clock Out : Output clock of the BIU = Byte clock

-- Acronyms/Abbreviations:
-- BIU - Bus Interface Unit

-- Dependencies:
-- IEEE.STD LOGIC 1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:
-- Revisions:

-- Modified on: 5/20/96

-- by: Mahyar Malekpour
-- Added "Strobe" signal that is used to load in data from the FIFO_In into
-- the p-to-s register. "Strobe" is active only for one bit clock cycle.

-- Modified on: 6/11/96
-- by: Mahyar Malekpour
-- Added P_to_S and $_to P components.

-- Modified on: 6/12/96
-- by: Mahyar Malekpour
-- Added PSCON component.

-- Modified on: 6/17/96

-- by: Mahyar Malekpour

-- P_to_S entity operates on the NEGATIVE edge of the Bit_Clock,

-- S_to_ P entity operates on the POSITIVE edge of the Bit_Clock,

-- and everything else operate on the POSITIVE edge of the Byte_ Clock.

-- Modified on: 8/1/96
-- by: Mahyar Malekpour

-- Read_Data_Count added to read the first three bytes, input data packet header,
-- from the input FIFO. These three bytes are FF, BIU_ID, and Count respectively.
-- See notes in DATCLK A.VHD file.

-- Modified on: 8/2/96
-- by: Mahyar Malekpour

-- Registering the errors encountered in the designated bit position of the
-- Status_Reg 0.

53

-- Register Status_Reg 1 is put a side for the micro-processor to write whatever
-- seemed necessay.

-- Modified on: 8/7/96

-- by: Mahyar Malekpour

-- Added Command Data Flag to make the most of the $§ to_ P Count. The $_to_ P_Count
-- is now treated as the command register while Command Data_ Flag is set high

-- and as a data byte counter when Command Data_ Flag is set low.

-- Modified on: 8/8/96

-- by: Mahyar Malekpour

-- Added four temporary buffers, Temp 1 Buffer thru Temp_ 4 Buffer, so that
-- the first three bytes of the data packet header will be around for the next
-- three Byte clocks. It is essential to keep these header bytes around for
-- sending them to the output FIFO after matching the BIU_ID.

-- As a result, will have to FLUSH these buffers so that all of the incomming
-- data bytes are transfered to the output FIFO. Thus, the total count is

-- +2 more than the number of data bytes in the incomming data packet.

-- Therefore, I increased the size of the S_to P _Count counter by one bit to
-- accomodate for the extra two dat bytes.

-- Modified on: 8/15/96
-- by: Mahyar Malekpour
-- Separating the Byte_ Clock to handel the Sync Detected.

-- Modified on: 8/22/96

-- by: Mahyar Malekpour

-- Added Switch Time_In and INTRPT Out to this entity.

-- Switch Time In is provided to give the user more control on the swutch time.
-- INTRPT _Out is used to let the uP know a new cycle started.

library IEEE ;

--use IEEE.std_logic_1164.all ;

use WORK.CNSTNT_P.all ;

use ieee.std_logic_arith.all ;

--use ieee.std logic_signed.CONV_INTEGER ;
use work.my std logic_arith.all ;

architecture XC4005_Behave of XC4005 is

component BYTCLK

port (Reset_BIU : in std_logic ;
Start_Cycle : in std_logic ;
Sync_Detected : in std_logic ;
Bit_Clock_In : in std_logic ;
Fixed Byte Clock_Out : out std_logic ;
Strobe_Out : out std_logic ;

Variable Byte Clock Out : out std_logic
)

end component ;

component S_to_P

PORT (
Bit_Clock_In : in std_logic ;
Serial_Data_In : in std_logic ;
Parallel Data_Out : out std_logic_vector ((Data_Length Plus_1) downto 0) ;
Mode_Bit_Out : out std_logic

)
end component ;

component P_to_S

PORT (
Bit_Clock_In : in std_logic ;
Parallel Data_In : in std_logic_vector (Data_Length downto 0) ;
Mode_Bit_In : in std_logic ;
Load_Parallel : in std_logic ;
Serial_Data_Out : out std_logic

54

)

end component

component PSCON

port (

Load_P_TO_S_ Count
Count_Value
FIFO_Empty Bar

Bit_Clock

BYTE_CLOCK
Read FIFO_Error
FIFO RD bar

end component

component HEADER

port (

BIU OR_RMU
Reset_BIU

BIU ID

Mode_Bit_In

Data_In

Byte Clock In
Sync_Detected_Out
Command_Data_Flag
Load_Counter_ Out

)

end component

component DATCLK

port (Reset_BIU
Transmit_Data
Byte Clock In
Count_Value_Out

)

end component

component PRMCON

port (

BIU OR_RMU
Reset_BIU
Sync_Detected
Start_Cycle

BIU ID

Byte Clock In
Start_Transmit
Start_Receieve
Status_Data
Start_Command
MUX_Select

ROM_Data
ROM_Read_Bar
ROM_Write Bar
ROM_ADDRESS
EPROM Error_Flag

)

end component

component RECEVR

port (Reset_BIU
Start_Cycle
Receieve Data
Byte Clock In
Load_Command_Reg
Start_Receieve
Receive_ Error_1
Receive_ Error_ 2
Switch_Time In

)

end component

i

i

i

i

i

i

in
in
in
in
in
out
out

in
in

out

in
in
in
in
in
in
ou
ou
ou
ou
ou

in
ou
ou
ou
ou

in
in
in
in
ou

ou
ou

in
in
in
in
in
in
out
out
out

t
t
t
t
t

t
t
t
t

t
t
t

STD_LOGIC ;

std_logic_vector (Data_Length downto 0) ;
STD_LOGIC ;

STD_LOGIC ;

STD_LOGIC ;

std_logic ;

STD_LOGIC) ;

std_logic ;

std_logic ;

std_logic_vector (Data_Length downto 0) ;
std_logic ;

std_logic_vector (Data_Length Plus_1 downto 0) ;
std_logic ;

std_logic ;

std_logic ;

std_logic

std_logic ;
std_logic ;
std_logic ;
std _logic_vector (1 downto 0)

std_logic ;

std_logic ;

std_logic ;

std_logic ;

std_logic_vector (Data_Length downto 0) ;
std_logic ;

std_logic ;

std_logic ;

std_logic ;

std_logic ;

std_logic_vector (Data_Length downto 0) ;

std_logic_vector (ROM_WIDTH - 1 downto 0) ;
std_Logic ; -- := '0' ; -- active low

std_Logic ; -- := '0' ; -- active low
std_logic_vector (ROM_ADDRESS LINES - 1 downto 0) ;
std_logic

std_logic ;
std_logic ;
std_logic ;
std_logic ;
std_logic ;
std_logic ;
std_logic ;
std_logic ;
std_logic_vector (2 downto 0) -- three bits for now

55

component STATUS

port (
BIU_OR_RMU
Reset_BIU
Start_Cycle
BIU_ID
Start_Command
Start_Transmit
Data_ Status_Flag
Data_Mode_Bit
FIFO_Data_ In

Byte Clock In
Status_Reg In

Transmit_Data
Load_Byte Out
Mode_Bit_Out
Data_Status_Out

component ;

entit
entit

signal
signal
signal
signal

Output_Data_ Buffer
Temp_ 1 Buffer
Temp_ 2 Buffer
Temp_ 3 Buffer

in
in
in
in
in
in
in
in
in

in
in

ou
ou
ou
ou

Y
Y

entity
entity
entity
entity
entity

std_logic ;
std_logic ;
std_logic ;
std_logic_vector (Data_Length downto 0) ;
std_logic ;
std_logic ;
std_logic ;
std_logic ;
std_logic_vector (Data_Length downto 0) ;
std_logic ;
std_logic_vector (Data_Length downto 0) ;
t std_logic ;
t std_logic ;
t std_logic ;
t std_logic_vector (Data_Length downto 0)
work.S_to P (S_to_P_Behave) ;
work.P_to S (P_to_S_Behave) ;
work .PSCON (PSCON_Behave) ;
work .BYTCLK (BYTCLK_Behave) ;
work .HEADER (HEADER_Behave) ;
work .DATCLK (DATCLK Behave) ;
work . PRMCON (PRMCON_Behave) ;
work .RECEVR (RECEVR_Behave) ;
work .STATUS (STATUS_Behave) ;
std_logic_vector (Data_Length_ Plus_1 downto 0) ;
std_logic_vector (Data_Length downto 0) ;
std_logic_vector (Data_Length downto 0) ;
std_logic_vector (Data_Length downto 0) ;
std_logic_vector (Data_Length downto 0) ;

signal Temp_4_ Buffer
signal
signal
signal

Fixed Byte Clock
Variable_ Byte Clock
Strobe

signal
signal
signal
signal

Internal_Read_Bar
Internal_ Write_ Bar
Write A Byte Bar
Load_Byte Out

-- Mahyar 3/27/1996

signal COUNT std_logic_vector (3 downto 0) ;
signal Status_Reg_ 0 std_logic_vector (Data_Length downto 0) ; -- := (others
signal Status_Reg_ 1 std_logic_vector (Data_Length downto 0) ; -- := (others =
signal Transfer Bar std_logic ;
signal Sync_Detected std_logic ;
signal Mode_Bit_In std_logic ; =-- Check for 'l' for command and '0' for
signal Data_Mode Bit std_logic ; -- set to 'l' for command, '0' for data
signal Mode_Bit_Out std_logic ; -- set to 'l' for command, '0' for data
signal Parallel_Load std_logic ; -- for internal use
signal Latched_Sync std_logic ;

std_logic ; --
std_logic ; --
std_logic ; --

std_logic ; --
std_logic ; -- :=
std_logic ; --
std_logic ; --

v
v
1

1
1
1
1

-- These signals are drived and set based on the instructions that

-- are part of the schedul

e.

-- divide by 9 clock
-- divide by 9 clock
-- Used to load p-to-s register

-- These signals need to be active only for one Fixed Byte Clock period.

signal Start_Transmit
signal Start_Cycle
signal Start_Receieve
signal Transmit_Data
signal Receieve_Data
signal Data_Status_Flag
signal Start_Command

S
S
S
S
S
S
S

td_logic ;
td_logic ;
td_logic ;
td_logic ;
td_logic ;
td_logic ; --
td_logic ;

v

for Data, '0'

56

for Status

data

-- The following signals are used to route the FIFO data and content of
-- status registers to the P_to_s conver module.

-- 8/26/96

signal Data_Status : std_logic_vector (Data_Length downto 0) ;

-- This signal is used to load the size of data packet into the
-- P_to_S_Count counter.

-- This signal needs to be active only for one Byte Clock period.
signal Load P_to_S Count : std_logic ;

-- Need to invert the Bit_Clock
signal Invert_ Bit_Clock_In : std_logic ;

signal Load_Command_Reg : std_logic ;
signal Command_Data_Flag : std_logic := '0' ;

-- Need these counters to count the number of expected data bytes in the
-- data packets.

signal P_to_S_Count : std_logic_vector (Data_Length downto 0) ;

signal $_to_ P_Count : std_logic_vector (Data_Length Plus_1 downto 0) ;

-- This counter is used to load in the data packet header from the
-- Input FIFO. It is loaded with a value of 3 and counts down to 0.
signal Read Data_Count : std logic_vector (1 downto 0) ;

-- data packet errors while reading and writing.
signal Read FIFO_Error_ 1 : std_logic ;
signal Read FIFO_Error_ 2 : std_logic ;
signal Write FIFO Error_1 : std_logic ;
signal Write FIFO Error_2 : std_logic ;
signal Receive_Error_ 1 : std_logic ;
signal Receive_Error 2 : std_logic ;

signal EPROM_Error_Flag : std_logic ;

-- Software clock to be used for checking the timing of the scheduled events.

constant Timer_Length : integer := 2 * Data_Length Plus 1 ; -- 16 bits

constant Timer Limit : integer := 65536 ; -- 2 ** 16

signal Timer : std_logic vector (Timer_Length - 1 downto 0) := (others =>
signal Timer Error : std_logic ;

begin

U0: BYTCLK port map (Reset BIU, Start_ Cycle, Sync_Detected, Bit_Clock_In,
Fixed Byte_ Clock, Strobe, Variable Byte Clock) ;

Ul: S_to P port map (Bit_Clock_In, Serial Data_In, Output_Data_ Buffer,
Mode_Bit_In) ;

U2: P_to_ S port map (Invert Bit_ Clock_In, Data_Status, Mode Bit_Out, Parallel_Load,
Serial_Data_Out) ;

U3: PSCON port map (Load P_to S Count, P_to_S_Count, Input FIFO Empty Bar,
Bit_Clock_In, Fixed Byte Clock, Read FIFO_ Error 2,

Internal_ Read Bar) ;

U4: PRMCON port map (BIU OR_RMU, Reset_ BIU, Sync Detected, Start_Cycle, BIU ID,

"0

Fixed Byte_ Clock, Start_Transmit, Receieve Data, Data_Status_Flag,

Start_Command, MUX Select,

ROM_Data, ROM_Read Bar, ROM_Write Bar, ROM_Address, EPROM_Error_ Flag)

U5: HEADER port map (BIU OR_RMU, Reset BIU, BIU ID, Mode_ Bit_ In, Output_Data_ Buffer,
Variable_ Byte_ Clock, Sync_Detected, Command Data_Flag,
Load_Command_Reg) ;
U6: DATCLK port map (Reset BIU, Transmit_ Data, Fixed Byte Clock, Read Data_Count)
U7: RECEVR port map (Reset BIU, Start_Cycle, Receieve_Data, Variable Byte Clock,
Load_Command_Reg, Start_Receieve, Receive_ Error_ 1,

Receive Error 2, Switch Time_In) ;

U8: STATUS port map (BIU OR_RMU, Reset BIU, Start_Cycle, BIU_ID, Start_Command,

57

i

Start_Transmit, Data_Status_Flag, Data Mode Bit, FIFO_Data_In,
Fixed Byte_ Clock, Status_Reg 0, Transmit_Data, Load_Byte Out,
Mode_Bit_Out, Data_Status) ;

Byte CLock_Out <= Fixed Byte Clock ;

Invert_ Bit_ Clock In <= not (Bit_Clock_In) ;

Parallel Load <= not (Internal_Read_Bar and Load_ Byte Out) and Strobe ;
Latched Sync_Out <= Latched Sync ;

Internal_Write_ Bar <= (not Variable Byte Clock) or Write A Byte Bar ;
-- Note: INTRPT_Out must be high for one Byte_ Clock.

-- 8/28/96
INTRPT_Out <= Start_Cycle ; -- Let the uP know a new cycle started

-- This process stores the content of the incomming bit stream for future

-- use. It is essential to keep this data around for a few Byte Clock
-- cycles. We need all the time we can get.
-- 8/2/96

-- The Temp_ 1 Buffer has to be loaded asynchronously to keep up with

-- possible changes and/or glitches in the incomming data bit stream.

-- 8/15/96

Load_Temp Buffer : process (Variable Byte Clock, Output_Data Buffer,
Sync_Detected)

begin
if Rising Edge (Sync_Detected) then -- async load
Temp_1 Buffer <= Output_Data_ Buffer (Data_Length_ Plus_1 downto 1) ;
elsif (Sync_Detected = '0') then -- a MUST.

if Rising Edge (Variable Byte_ Clock) then
Temp_1 Buffer <= Output_Data_Buffer (Data_Length downto 0) ;
Temp 2 Buffer <= Temp_1 Buffer ;
Temp_ 3 Buffer <= Temp_2_ Buffer ;
Temp_ 4 Buffer <= Temp_3_Buffer ;

end if ;
end if ;

end process ;

-- This process latches the "Sync_Detected" signal to be used by the
-- "Check_ ID" state machine. The signal is latched using the negative
-- edge of the bit clock to avoid the timing problem that otherwise

-- may occure.

Latch_Sync Detected : process

begin
wait until Falling_ Edge (Bit_Clock_In) ;
Latched Sync <= Sync_Detected ;

end process ;

-- This process deciphers the incomming address bits and activates one of
-- the selected ports used in this module.

Check_More_Addresses : process (Chip_Select_ Bar, ADDRESS)

begin
Transfer_ Bar <= '1' ;
if (ADDRESS = PORT_ADDRESS 3) and (Chip Select_Bar = '0') then
-- Transfering data from the FIFO In to the FIFO_Out
Transfer_Bar <= '0' ;
end if ;

end process ;

58

Write FIFO OQut : process -- (Internal Write_ Bar, Input_Data_ Buffer)
begin

wait until Falling_edge (Internal Write Bar) ;

FIFO Data Out <= Temp 4 Buffer ;

end process ;

-- The initialization of the FIFO signals are not necessary here at this
-- time. But after implementing the global BIU reset in the hardware,
-- this process will make more sense. For now, however, this redundancy
-- here doesn't have any sideeffects.
-- Mahyar 4/1/1996
Reset_ FIFO_Controls: process (Reset BIU, Internal Read Bar,
Internal_Write_ Bar)
begin
if (Reset_BIU = '0') then
Input_FIFO_Read Bar <= Internal Read Bar ;
Output_FIFO Write Bar <= Internal Write_ Bar ;
else -- time to reset the system.
Input_FIFO_Read Bar <= '1' ;
Output_FIFO Write Bar <= '1l' ;
end if ;

end process ;

-- The next two processes work together to define the bi-deirectional bus
uP_Read_XC4000_Status : process (Data_Read Bar, Status_Reg_ 0)
begin
if (Data_Read Bar = '0') then
FIFO_Data_In Out <= Status_Reg 0 ;
else
FIFO Data_In Out <= "ZZZZZZZZ" ;
end if ;

end process ;

uP_Write_ XC4000_Status : process -- (Data Write Bar, Status_Reg_ 1)
begin
wait until Rising edge (Data_Write Bar) ;

Status_Reg 1 <= FIFO_Data_In Out ;
end process ;

-- Note: Load P_to_S Count need be active, i.e., high, for only a short
-- time of one Bit_Clock_Period.

-~ 8/7/96
Read_Data Header : process --(Fixed Byte Clock, Read Data_Count, FIFO_Data_In,
-- Data_Mode_ Bit, P_to_ S Count, Load P_to_ S Count)
begin
wait until Rising Edge (Fixed Byte Clock) ; -- ==> setup time is half Fixed Byte Clock

Read FIFO_Error_ 1 <= '0' ;
Data_Mode Bit <= '0' ; -- set to 'l' for command, '0O' for data
Load_P_to_§ Count <= '0' ;

if (Transmit_Data = 'l1') then
P_to_8 Count <= "00000011" ; -- read the first three header bytes.
Load_P_to_S Count <= 'l', '0' after Bit_Clock_Period ;
Data_Mode Bit <= '1' ; -- get to 'l' for command, '0' for data
else
if (Read_Data_Count = "11") then
if (FIFO Data_In = "11111111") then -- send out a sync-pattern
Data_Mode Bit <= '0' ; -- set to 'l' for command, '0O' for data
else -- Error in data packet format
P_to_S_Count <= "00000000" ; -- stop reading from the FIFO.
Load_P_to S Count <= 'l', '0' after Bit_Clock_Period ;
Read FIFO Error 1 <= 'l' ; -- Raise the error flag.
end if ;

59

elsif (Read_Data_Count = "10") then
if (BIU OR_ RMU = '1') then -- am I BIU?
if (FIFO_Data_In (Data_Length) = '1') then
-- It is a command and it is an error
-- in data packet format and, thus, should be reported.

P_to_S Count <= "00000000" ; -- stop reading from the FIFO.
Load_P_to S Count <= 'l', '0' after Bit_Clock_Period ;
Read_ FIFO Error 1 <= 'l' ; -- Raise the error flag.
end if ;
end if ;
elsif (Read_Data_Count = "01") then
P _to S Count <«= FIFO Data In ; -- Now load the actual data count to be sent out.
Load_P_to S Count <= 'l', '0' after Bit_Clock_Period ;
else -- reset all.
Load P_to S Count <= '0'
P_to_ S Count <= "00000000" ; -- initialize it to zeros.
end if ;

end if ;
end process ;

-- This process initiates writing of the incomming data packet to the

-- output FIFO after detecting a synch-pattern.

-- It keeps writing the incomming data bytes to the FIFO until the

-- 8 to_P_Count reaches zero. The assumption is that there are as many

-- as S_to_P_Count CONSECUTIVE data bytes comming over the serial input

-- line.

-- 8/1/96

Write_ Out_FIFO_Process : process (Reset BIU, Start_Receieve, Variable Byte Clock,
S_to_P_Count, Write A Byte Bar)

variable TEMP : integer := 0 ;
begin
if (Reset_BIU = '0') then
if Rising edge (Start_Receieve) then
-- Synopsys vs Cadence
-- S _to P_Count <= Temp_1 Buffer + 3 ; -- 2 to flush the Temp_i Buffer's
TEMP := To_integer (Temp_ 1 Buffer) ;
TEMP := TEMP + 3 ;
S_to P_Count <= To_StdLogicVector (TEMP, 9) ;
end if ;

if Falling Edge (Variable Byte_Clock) then

-- Synopsys vs Cadence
TEMP := To_integer ($_to P_Count) ;
-- TEMP := CONV_SIGNED (S to P Count) ;

Write A Byte Bar <= '1' ;
Start_Cycle <= '0' ;

if (Command_Data_Flag = '0') then -- it is a count of data bytes
if (TEMP > 0) then
Write A Byte Bar <= '0' ;
TEMP := TEMP - 1 ;

-- Synopsys vs Cadence
S_to_P_Count <= To_StdLogicVector (TEMP, 9) ;
-- S_to_P_Count <= CONV_STD_LOGIC_VECTOR (TEMP, 9) ;

end if ;
else -- it is a command!?!?!?
-- Take the appropriate actions here and then reset the command/counter
-- register to zero to indicate end of operation.
Start_Cycle <= 'l' ; -- restart the schedule and the BIU
S _to P Count <= "000000000" ;

end if ;
end if ;

60

else -- time to reset the system.
Start_Cycle <= '0' ;
S _to_P Count <= "000000000"
Write A Byte Bar <= '1' ;

i

end if ;
end process ;

-- This process stores the type of errors encountered in their designated
-- bit positions.
-- 8/2/96
Register Errors : process (Reset_BIU, Read FIFO_Error_ 1, Read_ FIFO Error 2,
Receive_Error_ 1, Receive Error_ 2, EPROM_Error_ Flag)

begin

if (Reset_BIU = '1') then -- time to reset.
Status_Reg_ 0 <= "00000000"

i

else

if (Read FIFO Error_ 1 = 'l') then
Status_Reg 0 (0) <= '1' ;

elsif (Read FIFO Error_ 2 = 'l') then
Status_Reg 0 (1) <= '1' ;

elsif (Receive Error_1 = '1l') then
Status_Reg 0 (2) <= '1' ;

elsif (Receive Error_2 = 'l') then

Status_Reg 0 (3) <= '1'

i

elsif (EPROM _Error Flag = 'l') then
Status_Reg 0 (4) <= '1' ;
end if ;
end if ;

end process ;

-- This process handels the software timer.

-- The Timer is reset whenever BIU is reset.

-- The Timer is reset whenever Start_ Cycle is set.
-~ 8/20/96

Timer Controller : process (Fixed Byte_ Clock, Reset BIU, Start_ Cycle)

variable TEMP : integer := 0 ;
begin
-- Synopsys vs Cadence
TEMP := To_integer (Timer) ;
-- TEMP := CONV_SIGNED (Timer) ;
if (Reset_BIU = '0') and (Start_Cycle = '0') then
if Rising Edge (Fixed_ Byte_Clock) then

Timer Error <= '0' ;

if (TEMP >= Timer Limit) then
-- The schedule cycle is too large for this Timer.

Timer Error <= '1' ;
else
TEMP := TEMP + 1 ;
end if ;
end if ;
else -- time to reset the system.
Timer Error <= '0' ;
TEMP := 0 ;

end if ;

-- Synopsys vs Cadence
Timer <= To_StdLogicVector (TEMP, Timer Length)

i

61

-- Timer <= CONV_STD LOGIC VECTOR (TEMP, Timer Length) ;

end process ;

-- File Name: S_TO_P_E.VHD

-- Host Machine: GATEWAY 486/33 (IBM AT Clone)

-- Target Machine: GATEWAY 486/33 (IBM AT Clone)

-- Environment : Model Technology VHDL Simulation for Windows (Ver 4.3f)
-- DOS Version 6.2

-- Organization: NASA-LaRC

-- Project: Fly By Light - Power By Wire (FBL-PBW)

-- Author: Mahyar R. Malekpour

-- Creation Date: 05/20/96

-- Name/Number :

-- XC4000 (entity)

-- Abstract:

-- This file contains the entity declaration for the serial to parallel
-- conversion process.

-- SIGNAL DEFINITION

-- Acronyms/Abbreviations:

-~ FBL/DBW

-- BIU - Bus Interface Unit

-- Dependencies:
-- IEEE.STD_LOGIC_1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:
-- Revisions:

-- Modified on: 6/3/96
-- by: Mahyar Malekpour

library IEEE ;
use IEEE.std_logic_1164.all ;
use WORK.CNSTNT_P.all ;

entity S_TO_P is

PORT (
Bit_Clock_In : in std_logic ;
Serial_Data_In : in std_logic ;
Parallel Data_Out : out std_logic_vector ((Data_Length + 1) downto 0)
Mode_Bit_Out : out std_logic

)
end S_TO P ;

-- File Name: S_TO_P_A.VHD

-- Host Machine: GATEWAY 486/33 (IBM AT Clone)

-- Target Machine: GATEWAY 486/33 (IBM AT Clone)

-- Environment : Model Technology VHDL Simulation for Windows (Ver 4.3f)
-- DOS Version 6.2

-- Organization: NASA-LaRC

62

i

-- Project: Fly By Light - Power By Wire (FBL-PBW)
-- Author: Mahyar R. Malekpour
-- Creation Date: 05/20/96

-- Name/Number :
-- S_TO_ P (architecture)

-- Abstract:
-- This file contains the architecture for the serial to parallel conversion
-- Dprocess.

-- SIGNAL DEFINITION

-- Acronyms/Abbreviations:
-- BIU - Bus Interface Unit

-- Dependencies:
-- IEEE.STD LOGIC 1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:
-- Revisions:

-- Modified on: 6/3/96
-- by: Mahyar Malekpour

library IEEE ;
use IEEE.std_logic_1164.all ;

architecture S TO_P Behave of S _TO_P is

component USLR

GENERIC (Gen Data_Length : Natural := Data_Length + 1) ;
PORT (
Bit_Clock_In : in std_logic ;
Parallel Data_In : in std_logic_vector (Gen_Data_Length downto 0) ;
Parallel Data_Out : out std_logic_vector (Gen_Data_Length downto 0) ;
Load_Parallel : in std_logic ;
Mode_Bit_In : in std_logic ;
Serial_Data_In : in std_logic ;
Serial_Data_Out : out std_logic

)
end component ;

for all : USLR use entity work.USLR (USLR_Behave) ;

signal GND_1 : std_logic_vector (Data_Length + 1 downto 0) := "000000000" ;
signal GND_2 : std_logic := '0' ;
begin

-- This process samples the incomming serail data bits using the falling
-- edge of the bit clock and stores them in the Output_Data Buffer.

-- Note: The first bit is assumed to be the Mode_Bit and the next eight
-- bits the data byte with the MS bit comming in first.

U0: USLR port map (Bit_Clock In, GND_1, Parallel Data_Out, GND_2, GND_2,
Serial_Data_In, Mode Bit_Out) ;

63

File Name:

Host Machine:
Target Machine:
Environment

Organization:
Project:
Author:
Creation Date:

USLR_E.VHD
GATEWAY 486/33
GATEWAY 486/33

Model Technology VHDL Simulation for Windows (Ver 4.3f)

DOS Version 6.2
NASA-LaRC
Fly By Light -

05/21/96

(IBM AT Clone)
(IBM AT Clone)

Power By Wire (FBL-PBW)
Mahyar R. Malekpour

-- Name/Number :
-- SHFREG

-- Abstract:
-- This file contains the entity declaration for the universal shift left
-- register with parallel in and parallel out as well as serail in and serial

(entity)

-- out functionality.
-- conversion process.
-- SIGNAL DEFINITION

-- Acronyms/Abbreviations:
-~ FBL/DBW

-- BIU - Bus Interface Unit

-- Dependencies:
-- IEEE.STD_LOGIC_1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:
-- Revisions:

6/3/96
Mahyar Malekpour

-- Modified on:
-- by:

-- Introduced the generic parameter "Gen_Data_Length" to make this entitiy

-- more versetile for future use in
-- parameter is the global constant

library IEEE ;
use IEEE.std_logic_1164.all ;
use WORK.CNSTNT_P.all ;

entity USLR is

other modules.
"Data_Length".

However, it only shifts left one bit at a time.

The default for this

GENERIC (Gen_ Data_Length Natural := Data_Length) ;

PORT (
Bit_Clock_In in std_logic ;
Parallel Data_In in std_logic_vector (Gen_Data_Length downto 0)
Parallel Data_Out out std_logic_vector (Gen_Data_Length downto 0)
Load_Parallel in std_logic ;
Mode_Bit_In in std_logic ;
Serial_Data_In in std_logic ;
Serial_Data_Out out std_logic

)
end USLR ;

64

i

i

-- File Name: USLR_A.VHD

-- Host Machine: GATEWAY 486/33 (IBM AT Clone)

-- Target Machine: GATEWAY 486/33 (IBM AT Clone)

-- Environment : Model Technology VHDL Simulation for Windows (Ver 4.3f)
-- DOS Version 6.2

-- Organization: NASA-LaRC

-- Project: Fly By Light - Power By Wire (FBL-PBW)
-- Author: Mahyar R. Malekpour

-- Creation Date: 05/21/96

-- Name/Number :

-- USLR (architecture)
-- Abstract:

-- This file contains the entity declaration for the universal shift left
-- register with parallel in and parallel out as well as serail in and serial
-- out functionality. However, it only shifts left one bit at a time.

-- SIGNAL DEFINITION

-- Acronyms/Abbreviations:
-- BIU - Bus Interface Unit

-- Dependencies:
-- IEEE.STD LOGIC 1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:
-- Revisions:

-- Modified on: 6/3/96

-- by: Mahyar Malekpour
-- Introduced the generic parameter "Gen_ Data_Length" to make this entitiy
-- more versetile for future use in other modules. The default for this

-- parameter is the global constant "Data_Length".

library IEEE ;

use IEEE.std_logic_1164.all ;
--use WORK.CNSTNT_P.all ;

--use ieee.std logic_arith.all ;

architecture USLR_Behave of USLR is

signal Input_Data_Buffer : std_logic_vector (Gen_Data_Length downto 0) ;
signal Mode Bit : std_logic ;

Parallel Data Out <= Input_ Data Buffer ;
Serial_Data_Out <= Mode Bit ;

-- This process can load in parallel data and serializes the data byte in
-- the Input_Data_ Buffer using the rising edge of the bit clock and sends
-- them out one bit at a time at the rising edge.
-- This process can also load in serial data bits and send them out in
-- parallel.
Parallel To_ Serial To_Parallel : process

variable Temp_Out